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The electron charge density distribution of materials is one of the key quantities in computational materials
science as theoretically it determines the ground state energy and practically it is used in many materials analyses.
However, the scaling of density functional theory calculations with number of atoms limits the usage of charge-
density-based calculations and analyses. Here we introduce a machine-learning scheme with local-environment-
based graphs and graph convolutional neural networks to predict charge density on grid points from the crystal
structure. We show the accuracy of this scheme through a comparison of predicted charge densities as well as
properties derived from the charge density, and that the scaling is O(N). More importantly, the transferability is
shown to be high with respect to different compositions and structures, which results from the explicit encoding
of geometry.
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I. INTRODUCTION

The electron charge density distribution is of enormous
importance to the computational understanding and design of
materials, as many fundamental properties relevant to a wide
range of applications are directly related to the magnitude,
shape, and variation of the charge density. The charge density
and its related properties, such as the electrostatic potential
[1], electron localization function [2], and noncovalent in-
teraction index [3], are directly used in analyses for many
materials characteristics, including bonding [4], defects [5],
stability [6], reactivity [7], and electron [8,9], ion [10,11], and
thermal [12] transport, to name only a few. Recently, with
the rapid development of machine-learning (ML) applications
in physics [13,14], chemistry [15,16], and materials science
[17–19], charge densities have been increasingly used as input
features for predicting other materials properties in order to
improve performance [20–22]. Currently the most common
approach used to calculate charge density is density functional
theory (DFT). However, the relatively high computational cost
and high memory demands of DFT [23] limit its use for large
systems with more than several hundred atoms. Therefore, it is
important to develop methods capable of accurately predicting
charge density with less computational demand, to “bypass
the Kohn-Sham equations” [24], and ML is a promising tool
for this goal due to the success of its application in predicting
other DFT-computed properties [14,25–28].

In principle, an ideal ML algorithm should meet three
requirements: high accuracy, high transferability, and low
computational cost [29]. Very recently, there have been at-
tempts [24,30] to employ ML to predict the charge density
of molecules by expanding the density as a sum of atom basis
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functions. For the case of periodic systems, Schmidt et al. [31]
employed basis functions, summing over the contributions
from only neighboring atoms to achieve transferability be-
tween different cell sizes and lower memory demands, while
Chandrasekaran et al. [23] encoded the position of each grid
point to neighboring atoms by well-designed invariants to
predict charge density. In both of these works the ML schemes
were able to generate high-quality charge densities with O(N)
scaling, although compositional and structural transferability
remains a challenge, as these methods account for variations
in one structure at a time (i.e., strained lattices or different
molecular dynamics snapshots).

Here, we develop a ML-based approach that can predict
charge density for different structures with varying com-
positions, structural features, and defects for a given class
of materials in a single training, which is necessary for
application to systems such as amorphous hydrocarbons or
glasses where local structures are highly complex. In previous
works, a three-step process was followed: (1) record the
distance between each grid point and all neighboring atoms,
(2) add all distances together to form a feature vector, and
(3) compute charge density by regression on the final feature
vector. For multielemental systems, the first two steps are
repeated for each element type and the feature vectors are
concatenated together. In order to build upon this approach
with increasing transferability between different structures, in
addition to recording the distance between grid points and
atoms, we propose to both explicitly encode the geometry of
the cluster formed by neighboring atoms and account for all
elements simultaneously, as opposed to separately. Encoding
the geometry, on the one hand, avoids the problem of dif-
ferent local environments leading to a similar sum of atom
contributions; on the other hand, it enables the model to learn
from the geometry of existing structural features and speculate
on new ones. Greater structural transferability should also
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lead to improved accuracy in the prediction of charge density
for defect structures, as new structural features can form
during the formation of defects. To accommodate different
elements, the dimension of the final feature vector should be
independent of composition; otherwise the regression process
(matrix-vector multiplication) cannot be done.

A graph representation, encoding both nodes and bonds,
has a number of advantages that meet the requirements listed
above. Graph representations have been used recently to
encode information on both the level of atom and geometry
with high accuracy and transferability across composition,
structure, and property space [14,17], and the feature vectors
can be of the same dimension for different compositions if
properly designed. In this work, we encode environments of
grid points as graphs and employ the crystal graph convolution
neural network [14] (CGCNN) to find a relationship between
local environment and charge density with O(N) scaling.
We train and test our scheme on two classes of crystalline
materials, polymers and zeolites. For each case training data is
from some structures and the model is applied to others to test
transferability, and the accuracy of the predicted charge den-
sity is evaluated through statistics, visualization, and accuracy
of its derivative and related properties (i.e., dipole moment).
The most important contribution of the present work is to
demonstrate that by using graphs to encode local environment,
the model achieves high transferability to unseen structures.

II. METHOD

We encode three-dimensional space in the unit cell using
CGCNN by placing an imaginary atom at each grid point
in the unit cell (Fig. 1). The local environment is computed
for a given grid point by identifying atoms within a cutoff
radius (Rcut) from the imaginary atom, as shown in Fig. 1(b).

Next as shown in Fig. 1(c), atoms outside Rcut are removed,
and the remaining structure is placed in a larger cell to avoid
interactions between periodic images. Here Rcut is 4 Å, larger
than typical bond lengths for the materials considered in this
work [32], and the lattice parameters of the larger cell are set
to be no less than 3 × Rcut. Finally, the remaining structure
together with the imaginary atom are converted into a graph
representation as shown in Fig. 1(d) by connecting neighbors.
The CGCNN is then trained on the local-environment-based
graphs with the charge density on the grid points from DFT

calculations as the target property (with units of e/Å
3
). Details

of the DFT calculations and representations of the imaginary
atom are given in the Supplemental Material [33] (see also
Refs. [34–37] therein).

The neural network structure is summarized in Fig. 1(d).
Once given a graph, the convolutional layers iteratively update
the atom feature vector ν i based on surrounding atoms and
bonds with a convolution function:

ν
(t+1)
i = Conv

(
ν

(t )
i , ν

(t )
j , μi j

)
, (1)

where ν
(t )
i( j) is the atom feature vector of the i( j) th atom after

t convolutions, μi j represents the bond vector between the
ith and jth atoms, and “Conv” stands for the convolution
function. Here the convolution function designed in Ref. [14]
is used, which was shown to be accurate for encoding inter-
action strengths and produces feature vectors with constant
dimension for different compositions. A pooling function
is then used to create an overall feature vector to satisfy
permutational and size invariance:

ν = Pool
(
ν

(0)
0 , . . . , ν

(T )
0 , . . . , ν

(T )
N

)
. (2)

FIG. 1. (a) Crystal structure of crystalline ethylene. The blue plus symbol in the center denotes a grid point we are interested in. (b)
Crystalline ethylene with the imaginary atom. Highlighted atoms are those within the cutoff radius. (c) Local environment around the imaginary
atom. (d) Sketch of local-environment-based graph and CGCNN architecture. Color coding: Green, carbon; gray, hydrogen; blue, imaginary
atom; yellow, highlighted atoms within the cutoff radius.
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Here, the mean of atom vectors is taken as the feature after
pooling for simplicity, while other pooling functions can also
be used.

In addition, two hidden layers are used to capture the
complex relationship between structure and property, and
finally an output layer is used to give the target property. This
process meets both of the requirements as mentioned above,
since after convolution the atom feature vector for the imag-
inary atom encodes the distances between one grid point and
neighboring lattice atoms, while that for lattice atoms encodes
their position with respect to not only other lattice atoms but
also the imaginary atom. The pooling process incorporates all
the information together and makes the final feature vector of
the same dimension for materials with different compositions.

III. RESULTS

In the case of crystalline polymers, we extract 30 000
graphs (grid points) from 37 different structures as training
data, while in the case of zeolites 8000 graphs are generated
from 5 different structures for training. The list of structures
from which training data are obtained is provided in Table S2
of the Supplemental Material [33]. Further details related to
data set construction and grid spacing are also provided in the
Supplemental Material [33].

In Fig. 2(a), we show how the prediction performance
changes as a function of the training size. The straight-line-
like trends in Fig. 2(a) indicate that better performance is
possible with larger training sets. In addition, the steeper
slope for the case of zeolites indicates their reduced chemical
complexity compared to the polymers as discussed below.
As for the computational cost, although direct comparison
between computation time of DFT and ML is difficult as they
are based on different computing architectures, in Fig. 2(b)
the relation between computational time and number of atoms
in the system is plotted for prediction of the charge density
of crystalline p-xylylene using our ML model and DFT calcu-
lations, from which one can see the linear scaling of the ML
approach.

In order to test the degree of transferability toward different
structures, we apply our model to predict the charge density
of 17 crystalline polymers and 9 zeolites not included in
the training sets, as shown in Table I. In both cases, the
nomex polymer and NPO zeolite also have versions with
explicitly created defect structures (denoted as nomex_defect
and NPO_defect) in order to represent additional chemical
complexity. These materials are not subsets of the training
sets in terms of structure or size. Structural features are
represented by coordinations of skeleton atoms (C/O in the
case of polymer/zeolite). For example, C2H2 means there
are 2 C atoms and 2 H atoms coordinated with the central
atom. For polymers, in Fig. 3(a) the frequency of different
coordinations for carbon atoms is shown for both the training
and test sets, from which one can see that nearly 20 different
coordinations appear, showing considerable bonding com-
plexity. More importantly, there are three coordinations in the
test set that are not included in the training set (H4, C1H1, and
C4). For zeolites, the training set is simpler than the polymer
set in terms of structure, as only two coordinations exist, and
in the test set only the structure with a defect, NPO_defect,
has the coordination of Si1, while all other structures have
coordination Si2. From the perspective of size, for polymers,
structures in the training set span a range from 8 to 288
atoms in the unit cell, while the structures in the test set
span a range from 24 to 504 atoms, and for zeolites the size
ranges are 120 to 366 atoms and 18 to 576 atoms for the
training and test set, respectively. Further details regarding
the chemical complexity based on composition are provided
in the Supplemental Material [33] (see also Refs. [38–40]
therein).

Here, we choose two metrics, root-mean-square errors
(RMSEs) and coefficients of determination (R2), to quantify
errors in the ML-predicted charge density. These metrics,
also used in Schmidt et al. [31], provide insights on both
the magnitude of absolute errors (by RMSEs) and relative
performance of the predictions (by R2). As shown in Table I,
the RMSEs of the predicted charge densities are all less than

0.2 e/Å
3
, which are comparable to the errors in Ref. [31], and

FIG. 2. (a) Mean average error (MAE, in e/Å
3
) of the ML-predicted charge density of the test sets (grid points) from the training structures

versus training set size for polymer and zeolite materials. (b) CPU time (in seconds) for DFT calculations and GPU time (in seconds) for ML
prediction versus number of atoms in the cell for crystalline p-xylylene. DFT calculations are performed by 24 Intel Xeon CPUs with RAM of
128 GB, while ML calculations are carried out on a single NVIDIA GeForce GTX 1070 GPU with RAM of 2 GB.
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TABLE I. Root-mean-square errors (RMSEs) and coefficients of determination (R2) of the ML-predicted charge density (ρ, in e/Å
3
) and

Laplacian of charge density (∇2ρ, in e/Å
5
). For each structure, the error metrics are computed over all grid points in the unit cell. The last nine

structures with 3-letter abbreviations are zeolites, and others are crystalline polymers.

Name Formula (inside the cell) RMSE (ρ) R2 (ρ) RMSE (∇2ρ) R2 (∇2ρ)

1,3-dioxolane-II C24H48O16 0.0628 0.9933 0.4190 0.9934
acetaldehyde C32H64O16 0.0818 0.9848 0.5007 0.9850
cis-1,4-butadiene C16H8 0.0902 0.9805 0.3502 0.9822
glycolide C8H8O8 0.0681 0.9943 0.4502 0.9941
gutta-percha-alpha C20H32 0.0369 0.9953 0.1998 0.9939
i-4m1p C168H336 0.0666 0.9729 0.4521 0.9656
i-alpha-vnaph C192H160 0.0661 0.9816 0.4311 0.9778
i-ortho-mths C144H160 0.0593 0.9831 0.3678 0.9798
i-propylene-alpha C36H72 0.0491 0.9881 0.2992 0.9852
isobutylene C64H128 0.0910 0.9569 0.6114 0.9541
nomex C14H10O2N2 0.0626 0.9926 0.3333 0.9899
nomex_defect C13H9O2N2 0.0665 0.9913 0.3590 0.9882
oxymethylene C4H8O4 0.0786 0.9926 0.4765 0.9906
p-xylylene C16H8 0.0580 0.9890 0.2735 0.9916
s-propylene-1 C24H12 0.0523 0.9835 0.3359 0.9814
tetramtht C12H12O4 0.0502 0.9960 0.3538 0.9954
trans-decenamer C10H18 0.0309 0.9970 0.3590 0.9882
NPO Si6O12 0.0977 0.9893 0.5602 0.9885
NPO_defect Si5O12 0.1798 0.9745 0.9289 0.9721
JBW Si6O12 0.0847 0.9914 0.5702 0.9887
CAN Si12O24 0.0831 0.9906 0.6014 0.9893
AFY Si16O32 0.0778 0.9894 0.5418 0.9879
JSN Si16O32 0.0785 0.9911 0.5221 0.9901
MTN Si136O272 0.0821 0.9903 0.2809 0.9886
TUN Si192O384 0.0754 0.9920 0.1986 0.9922
UOV Si176O352 0.0912 0.9881 0.2039 0.9876

the level of accuracy was demonstrated to be sufficient for
most applications relying on the accuracy of the density repre-
sentation [41]. The RMSEs of test structures are also close to
that of the training sets (0.067 e/Å

3
and 0.064 e/Å

3
for crys-

talline polymers and zeolites, respectively), indicating little
overfitting. More importantly, the R2 are larger than 0.95 for
all test structures, suggesting a high prediction performance.
The results for the case of zeolites show that for such a simple
materials class, accurate prediction of the charge density can

be achieved with a relatively small training set (less than
10 000 training data in this case). In addition to these general
trends, we highlight the cases with different coordination
environments (i-4m1p, isobutylene, and the nomex_defect).
Although larger errors are observed in these cases, they are
not far from other structures, suggesting good transferability
to unseen structural features.

Next, the Laplacian of the charge density is computed in
order to test the ML model’s ability to capture variation in

FIG. 3. (a) and (b) Appearance frequency of coordinated atoms of carbon atoms in the training set for the case of crystalline polymers
versus the test set as a whole and nomex and nomex_defect, respectively. Here the “X”s in “C2X1” and “C2X2” denote rare elements in our
case (Cl, F, S, Si, Hg). (c) Appearance frequency of oxygen coordinated atoms in the training set for the case of zeolites versus the structure of
NPO_defect.
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FIG. 4. Visualization of electron charge density (ρ, in e/Å
3
). Panels (a), (b), (c) and (d), (e), (f) show crystal structure, ML-predicted ρ, and

difference between ML-predicted ρ and DFT-calculated ρ on the C six-ring plane of pristine nomex and nomex with a carbon and a hydrogen
vacancy, respectively. Panels (g), (h), (i) and (j), (k), (l) show crystal structure, ML-predicted ρ, and difference between ML-predicted ρ and
DFT-calculated ρ on the Si-O six-ring plane of pristine NPO and NPO with a Si vacancy, respectively. Atom color coding: Green, carbon;
gray, hydrogen; red, oxygen; blue, nitrogen; yellow, silicon.

charge. The Laplacian of the charge density is of great impor-
tance to functional construction [42] and materials analysis
[43], and from Table I we can see that the Laplacian is also
well predicted with R2 > 0.95.

In order to visualize the performance and transferability of
our model, we compare the ML-computed charge densities
and difference between charge densities from ML and DFT
of pristine nomex, nomex with a C-H vacancy, pristine NPO,
and NPO with a Si vacancy in Fig. 4. In all the cases, the
building blocks of structures (e.g., the C six-ring and Si-O
six-ring) are well represented. For defect structures, although
there are more significant differences between ML and DFT,
the magnitude of the difference is still low compared with the
charge density itself, suggesting high transferability toward
defect structures.

We further compare the value of ML-predicted ρ versus
DFT-calculated ρ as shown in Fig. 5. The ML model success-
fully captures the charge densities in most regions for the four
structures with good alignment. As shown in Figs. 5(b) and
5(d), our ML model is able to accurately capture the charge
density of a vacancy even though no defect structures were
present in the training sets. Meanwhile, we can see that most
of the deviation in the ML approach compared with DFT is
from regions with ultrahigh charge density (near atom cores as
shown in Fig. 4), providing insight into directions for further
improvement as discussed below.

Last, we evaluate the accuracy of our model for predicting
the dipole moment, a materials property that can be derived
from the charge density and the crystal structure:

νe =
∫

cell
r · ρ(r)dr,

νi =
∫

cell
r · Z (r)dr, μ = |νe + νi|/Vcell, (3)

where r denotes position vector, Vcell is the volume of cell,
ρ(r) and Z (r) are charges from electron and ion (opposite
sign) on r, νe and νi represent electron and ion dipole
vectors, and μ is the dipole moment per volume. The results
are shown in Table II, and we can see that the differences
between the two electron dipole vectors (from ML and DFT)
are very small in all the cases with a high R2 of 0.99. As
for the total dipole moment, although comparative deviations
increase after the cancellation of contributions from positive
and negative charge, our model can still achieve a R2 of
0.89, close to that of machine-learning schemes designed
specifically for dipole moments (0.93 in Pereira et al. [44]
and 0.91 in Bereau et al. [45]).

IV. DISCUSSION

In order to probe the origin of the transferability of
our model, we propose that the difficulty of transferability

184103-5



GONG, XIE, ZHU, WANG, FADEL, LI, AND GROSSMAN PHYSICAL REVIEW B 100, 184103 (2019)

FIG. 5. Panels (a), (b), (c), and (d) show ML-predicted charge density (ρ, in e/Å
3
) versus DFT calculated ρ for pristine nomex,

nomex_defect, pristine NPO, and NPO_defect, respectively.

between different structures arises from both training and
prediction: in training, the model has to distinguish between
environments that seems to be “similar” but have very dif-
ferent values of charge, and in prediction, the model has to
find similarities between new and existing features. Here,
the geometry of neighboring atoms contained in our graph
representation simultaneously provides the information for

the two tasks, leading to the improved transferability of our
model. On the one hand, encoding the geometry makes the
local environments more distinguishable; on the other hand,
learning the geometry enables the model to speculate on new
structural features from existing ones, which also helps to
predict the shape of charge density around the defects from
the shape of structural features.

TABLE II. Electron dipole vectors (νe, in e Å) and total dipole moment (μ, in debyes/Å
3
) from ML-predicted ρ and DFT-calculated ρ in

the unit cells of half of the test structures, respectively.

Name νe (ML) νe (DFT) μ (ML) μ (DFT)

nomex (20.9, 20.0, 431.4) (19.1, 19.2, 422.3) 0.652 0.781
nomex_defect (31.9, 27.5, 440.3) (29.9, 26.9, 432.0) 0.647 0.782
s-propylene-1 (858.7, 323.8, 438.0) (898.9, 339.8, 458.5) 0.141 0.260
glycolide (219.0, 273.9, 295.4) (216.1, 271.2, 291.8) 0.366 0.463
p-xylylene (38.6, 363.9, 161.0) (38.0, 362.6, 160.4) 1.095 1.076
tetramtht (80.0, 78.8, 381.5) (83.2, 81.8, 396.5) 0.572 0.383
trans-decenamer (42.6, 234.5, 306.2) (44.0, 243.2, 317.5) 0.649 0.409
NPO (185.4, 321.2, 220.3) (196.7, 340.6, 232.8) 1.025 1.248
NPO_defect (202.4, 333.0, 229.0) (184.4, 325.6, 226.7) 1.390 1.322
JBW (240.6, 349.7, 362.6) (232.7, 341.2, 350.4) 1.799 1.547
CAN (572.9, 992.4, 466.0) (573.9, 994.1, 465.2) 1.294 1.302
AFY (787.4, 1363.8, 1094.4) (777.0, 1345.8, 1081.6) 1.247 1.143
JSN (857.1, 827.1, 1855.7) (866.6, 831.6, 1869.2) 1.170 1.260
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FIG. 6. (a) Sketch of two different local environments with similar sum of atom contributions. (b) Geometries of central carbon atoms with
coordinated C1H3, C2H2, C3H1, and C4 atoms. (c) Shape of C-C-H and C-O-H and their charge density distributions (ρ, in e/Å

3
). Atom

color coding: Green, carbon; gray, hydrogen; red, oxygen.

In order to illustrate the impact of encoding the geometry
of neighboring atoms for distinguishing local environments,
we sketch two local environments in Fig. 6(a). If the envi-
ronments of grid points are simply described by considering
distances to each atom separately and then summing atom
contributions as in the previous models, the two environments
would appear to be very similar. However, they are actually
quite different, and the difference can be explicitly encoded
by the distance between the two atoms. For speculating on
new structural features from existing ones, we plot the ge-
ometries of central carbon atoms with coordinated C1H3,
C2H2, C3H1, and C4 atoms in Fig. 6(b). When predicting
charge density around C4, our model can learn from the
geometries of C1H3, C2H2, and C3H1 in the training set that
the tetrahedral shape of C4 corresponds to an sp3-hybridized
central carbon atom, which gives key information for charge
distribution around the central carbon atom. As for transfer-
ability to defect-induced structural features, although in the
nomex_defect case there is a structural feature (C1H1) that
does not exist in the training set with all pristine structures,
as shown in Fig. 6(c), the shape of C1H1 (C-C-H, an obtuse
angle) is very similar to that of C-O-H in the training set.
Therefore, the charge distributions around the two structural
features should both be in the shape of an obtuse angle. With
the information of geometries, our model can capture such
similarity and predict the obtuse-angle-like charge density
around C1H1, and the ratio of charge density between C-
C and C-H atoms can be learned from the 20+ structural
features listed in Fig. 3.

We further conduct a toy-model experiment to verify the
above statement regarding geometry-induced transferability,
shown in Fig. 7(a). First, a CGCNN model is trained on
3000 grid points within 4 Å of a linear C-C-C molecule,
and then used to predict the charge density of an orthogonal
C-C-C molecule. To examine the effect of geometry toward
predicting new structural features, we sample a new set of
3000 grid points equally from both the linear C-C-C molecule
and an orthogonal C-O-C molecule and train another CGCNN
model. We find that after incorporating the orthogonal geom-
etry into the training set, the prediction error to the orthogonal
C-C-C molecule decreases and is lower than that of the two
single-training molecule cases, which shows that encoding
geometry helps to predict new structural features. In order
to further verify that it is the geometry, not the specific

training molecule, that leads to the improvement, we repeat
the experiments with the replacement of O by B, N, and
F as shown in Table S3 of the Supplemental Material [33],
in which one can see that in all cases the prediction error
with two training molecules is lower than that with single
training molecules. Another insight from this experiment is
that currently transferability between elements is still limited
in the sense that it is difficult to predict the ratio of charge
density between C-C only from that of C-O, which can be
attributed to the poor design of the element feature vector, a
subject of further investigation in future work.

In the introduction, we also mentioned the effect of the
same dimension of the features. We do believe that the same-
dimensional features facilitate the training process, since if
the dimension of features scales linearly with the number of
elements, then the time of training will also largely depend on
it, which is undesirable in multielemental systems. However,
the same dimension of the features is not the fundamental
origin of transferability, and it is less important than encod-
ing geometry, the main origin of transferability as proposed
above. In order to further verify the dominant role of geometry
in transferability, we perform another toy-model experiment

FIG. 7. (a) Illustration of the first toy-model experiment. The

top and bottom MAEs (in e/Å
3
) are from the predictions to the

orthogonal C-C-C molecule by one of the two training molecules
(linear C-C-C and orthogonal C-O-C), while the middle one is
from the prediction trained on both of the training molecules. (b)
Illustration of the second toy-model experiment. The top and bottom

MAEs (in e/Å
3
) are from the predictions to the orthogonal C-C-C

molecule by one of the two training molecules (linear C-C-C and
linear C-O-C), while the middle one is from the prediction trained
on both of the training molecules (linear C-C-C and linear C-O-C).
Atom color coding: Green, carbon; red, oxygen.
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[Fig. 7(b)]. In this experiment, we sample a set of 3000 grid
points from both the linear C-C-C molecule and a new linear
C-O-C molecule and train a CGCNN model with the same set-
tings as the first experiment. Therefore, the dramatic increase
of the prediction error to the orthogonal C-O-C molecule and
the fact that it is higher than that of the case with the linear
C-C-C molecule as the single training molecule can only be
attributed to the geometry of training molecules, which shows
that the transferability achieved in the first experiment is the
result of only geometry, not other conditions including the
dimension of features.

We propose further improvements in the scheme presented
in three aspects. First, as mentioned we will design architec-
tures to efficiently generate more materials properties based
on charge density, especially the total energy of the unit cell,
for which both traditional methods (e.g., Kohn-Sham equa-
tions [46] or the embedded-atom method [47]) and machine-
learning approaches [21,22] are options under consideration.
Second, as discussed above regions near nuclei possess the
highest deviations, and to improve the sensitivity of our model
for small distances between imaginary and real atoms, trans-
formations to weight small distances during the learning can
be designed. Last, as mentioned we aim to develop new atom
feature vectors that can achieve better transferability between
different elements, with one possible approach to learn atomic
features back from charge density distributions around each
type of atom.

V. CONCLUSION

In summary, we have developed a machine-learning model
to predict the electron charge density distribution of ma-
terials based on graph convolutional neural networks with
O(N) scaling. In the case studies of crystalline polymers
and zeolites, local-environment-based graphs are extracted
from some structures and features learned, and the learned
models are applied to structures different from the training
sets. The accuracy and usability of our model have been
evaluated by statistical errors, visualization, and quality of
charge density-based properties. The most important benefit
of our model is high transferability between different struc-
tures, which can be attributed to the ability of the graph
representation to explicitly encode the geometry of local
environments.
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