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Graph dynamical networks for unsupervised
learning of atomic scale dynamics in materials
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Understanding the dynamical processes that govern the performance of functional materials

is essential for the design of next generation materials to tackle global energy and envir-

onmental challenges. Many of these processes involve the dynamics of individual atoms or

small molecules in condensed phases, e.g. lithium ions in electrolytes, water molecules in

membranes, molten atoms at interfaces, etc., which are difficult to understand due to the

complexity of local environments. In this work, we develop graph dynamical networks, an

unsupervised learning approach for understanding atomic scale dynamics in arbitrary phases

and environments from molecular dynamics simulations. We show that important dynamical

information, which would be difficult to obtain otherwise, can be learned for various multi-

component amorphous material systems. With the large amounts of molecular dynamics

data generated every day in nearly every aspect of materials design, this approach provides a

broadly applicable, automated tool to understand atomic scale dynamics in material systems.
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Understanding the atomic scale dynamics in condensed
phases is essential for the design of functional materials to
tackle global energy and environmental challenges1–3. The

performance of many materials depends on the dynamics of
individual atoms or small molecules in complex local environ-
ments. Despite the rapid advances in experimental techniques4–6,
molecular dynamics (MD) simulations remain one of the few
tools for probing these dynamical processes with both atomic
scale time and spatial resolutions. However, due to the large
amounts of data generated in each MD simulation, it is often
challenging to extract statistically relevant dynamics for each
atom especially in multi-component, amorphous material sys-
tems. At present, atomic scale dynamics are usually learned by
designing system-specific descriptions of coordination environ-
ments or computing the average behavior of atoms7–10. A general
approach for understanding the dynamics in different types of
condensed phases, including solid, liquid, and amorphous, is still
lacking.

The advances in applying deep learning to scientific research
open new opportunities for utilizing the full trajectory data from
MD simulations in an automated fashion. Ideally, one
would trace every atom or small molecule of interest in the MD
trajectories, and summarize their dynamics into a linear, low
dimensional model that describes how their local environments
evolve over time. Recent studies show that combining Koopman
analysis and deep neural networks provides a powerful tool to
understand complex biological processes and fluid dynamics
from data11–13. In particular, VAMPnets13 develop a variational
approach for Markov processes to learn an optimal latent space
representation that encodes the long-time dynamics, which
enables the end-to-end learning of a linear dynamical model
directly from MD data. However, in order to learn the atomic
dynamics in complex, multi-component material systems, sharing
knowledge learned for similar local chemical environments is
essential to reduce the amount of data needed. The recent
development of graph convolutional neural networks (GCN) has
led to a series of new representations of molecules14–17 and
materials18,19 that are invariant to permutation and rotation
operations. These representations provide a general approach to
encode the chemical structures in neural networks which shares
parameters between different local environments, and they
have been used for predicting properties of molecules and
materials14–19, generating force fields19,20, and visualizing struc-
tural similarities21,22.

In this work, we develop a deep learning architecture, Graph
Dynamical Networks (GDyNets), that combines Koopman ana-
lysis and graph convolutional neural networks to learn the
dynamics of individual atoms in material systems. The graph
convolutional neural networks allow for the sharing of knowledge
learned for similar local environments across the system, and the
variational loss developed in VAMPnets13,23 is employed to learn
a linear model for atomic dynamics. Thus, our method focuses on
the modeling of local atomic dynamics instead of global
dynamics. This significantly improves the sampling of the atomic
dynamical processes, because a typical material system includes a
large number of atoms or small molecules moving in structurally
similar but distinct local environments. We demonstrate this
distinction using a toy system that shows global dynamics can be
exponentially more complex than local dynamics. Then, we apply
this method to two realistic material systems—silicon dynamics at
solid–liquid interfaces and lithium ion transport in amorphous
polymer electrolytes—to demonstrate the new dynamical infor-
mation one can extract for such complex materials and envir-
onments. Given the enormous amount of MD data generated in
nearly every aspect of materials research, we believe the broad
applicability of this method could help uncover important new

physical insights from atomic scale dynamics that may have
otherwise been overlooked.

Results
Koopman analysis of atomic scale dynamics. In materials
design, the dynamics of target atoms, like the lithium ion in
electrolytes and the water molecule in membranes, provide key
information to material performance. We describe the dynamics
of the target atoms and their surrounding atoms as a discrete
process in MD simulations,

xtþτ ¼ FðxtÞ; ð1Þ
where xt and xt+τ denote the local configuration of the target
atoms and their surrounding atoms at time steps t and t+ τ,
respectively. Note that Eq. (1) implies that the dynamics of x is
Markovian, i.e. xt+τ only depends on xt not the configurations
before it. This is exact when x includes all atoms in the system,
but an approximation if only neighbor atoms are included. We
also assume that each set of target atoms follow the same
dynamics F. These are valid assumptions since (1) most inter-
actions in materials are short-range, (2) most materials are either
periodic or have similar local structures, and we could test them
by validating the dynamical models using new MD data, which
we will discuss later.

The Koopman theory24 states that there exists a function χ(x)
that maps the local configuration of target atoms x into a lower
dimensional feature space, such that the non-linear dynamics F
can be approximated by a linear transition matrix K,

χðxtþτÞ � KTχðxtÞ: ð2Þ
The approximation becomes exact when the feature space has
infinite dimensions. However, for most dynamics in material
systems, it is possible to approximate it with a low dimensional
feature space if τ is sufficiently large due to the existence of
characteristic slow processes. The goal is to identify such slow
processes by finding the feature map function χ(x).

Learning feature map function with graph dynamical net-
works. In this work, we use GCN to learn the feature map
function χ(x). GCN provides a general framework to encode the
structure of materials that is invariant to permutation, rotation,
and reflection18,19. As shown in Fig. 1, for each time step in the
MD trajectory, a graph G is constructed based on its current
configuration with each node vi representing an atom and each
edge ui,j representing a bond connecting nearby atoms. We
connect M nearest neighbors considering periodic boundary
conditions while constructing the graph, and a gated archi-
tecture18 is used in GCN to reweigh the strength of each con-
nection (see Supplementary Note 1 for details). Note that the
graphs are constructed separately for each step, so the topology of
each graph may be different. Also, the 3-dimensional information
is preserved in the graphs since the bond length is encoded in ui,j.
Then, each graph is input to the same GCN to learn an embed-
ding for each atom through graph convolution (or neural message
passing16) that incorporates the information of its surrounding
environments.

v′i ¼ Convðvi; vj; uði;jÞÞ; ði; jÞ 2 G: ð3Þ
After K convolution operations, information from the Kth
neighbors will be propagated to each atom, resulting in an

embedding vðKÞi that encodes its local environment.
To learn a feature map function for the target atoms whose

dynamics we want to model, we focus on the embeddings learned
for these atoms. Assume that there are n sets of target atoms each
made up with k atoms in the material system. For instance, in a
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system of 10 water molecules, n= 10 and k= 3. We use the label
v[l,m] to denote the mth atom in the lth set of target atoms. With a
pooling function18, we can get an overall embedding v[l] for each
set of target atoms to represent its local configuration,

v½l� ¼ Poolðv½l;0�; v½l;1�; ¼ ; v½l;k�Þ: ð4Þ

Finally, we build a shared two-layer fully connected neural
network with an output layer using a Softmax activation function
to map the embeddings v[l] to a feature space ev½l� with a pre-
determined dimension. This is the feature space described in Eq.
(2), and we can select an appropriate dimension to capture the
important dynamics in the material system. The Softmax function
used here allows us to interpret the feature space as a probability
over several states13. Below, we will use the term “number of
states” and “dimension of feature space” interchangeably.

To minimize the errors of the approximation in Eq. (2), we
compute the loss of the system using a VAMP-2 score13,24 that
measures the consistency between the feature vectors learned at
timesteps t and t+ τ,

Loss ¼ �VAMPðev½l�;t ;ev½l�;tþτÞ; t 2 ½0;T � τ�; l 2 ½0; n�: ð5Þ

This means that a single VAMP-2 score is computed over the
whole trajectory and all sets of target atoms. The entire network is
trained by minimizing the VAMP loss, i.e. maximizing the
VAMP-2 score, with the trajectories from the MD simulations.

Hyperparameter optimization and model validation. There are
several hyperparameters in the GDyNets that need to be opti-
mized, including the architecture of GCN, the dimension of the
feature space, and lag time τ. We divide the MD trajectory into
training, validation, and testing sets. The models are trained with
trajectories from the training set, and a VAMP-2 score is com-
puted with trajectories from the validation set. The GCN archi-
tecture is optimized according to the VAMP-2 score similar to
ref. 18.

The accuracy of Eq. (2) can be evaluated with a Chapman-
Kolmogorov (CK) equation,

KðnτÞ ¼ KnðτÞ; n ¼ 1; 2; ¼ : ð6Þ

This equation holds if the dynamic model learned is Markovian,
and it can predict the long-time dynamics of the system. In
general, increasing the dimension of feature space makes the
dynamic model more accurate, but it may result in overfitting
when the dimension is very large. Since a higher feature space
dimension and a larger τ make the model harder to understand
and contain less dynamical details, we select the smallest feature
space dimension and τ that fulfills the CK equation within
statistical uncertainty. Therefore, the resulting model is inter-
pretable and contains more dynamical details. Further details
regarding the effects of feature space dimension and τ can be
found in refs. 13,24.

Local and global dynamics in the toy system. To demonstrate
the advantage of learning local dynamics in material systems, we
compare the dynamics learned by the GDyNet with VAMP loss
and a standard VAMPnet with fully connected neural networks
that learns global dynamics for a simple model system using the
same input data. As shown in Fig. 2a, we generated a 200 ns MD
trajectory of a lithium atom moving in a face-centered cubic
(FCC) lattice of sulfur atoms at a constant temperature, which
describes an important lithium ion transport mechanism in solid-
state electrolytes7. There are two different sites for the lithium
atom to occupy in a FCC lattice, tetrahedral sites and octahedral
sites, and the hopping between the two sites should be the only
dynamics in this system. As shown in Fig. 2b–d, after training and
validation with the first 100 ns trajectory, the GDyNet correctly
identified the transition between the two sites with a relaxation
timescale of 42.3 ps while testing on the second 100 ns trajectory,
and it performs well in the CK test. In contrast, the standard
VAMPnet, which inputs the same data as the GDyNet, learns a
global transition with a much longer relaxation timescale at 236
ps, and it performs much worse in the CK test. This is because the
model views the four octahedral sites as different sites due to their
different spatial locations. As a result, the transitions between
these identical sites are learned as the slowest global dynamics.

It is theoretically possible to identify the faster local dynamics
from a global dynamical model when we increase the dimension
of feature space (Supplementary Fig. 1). However, when the size
of the system increases, the number of slower global transitions
will increase exponentially, making it practically impossible to
discover important atomic scale dynamics within a reasonable
simulation time. In addition, it is possible in this simple system to
design a symmetrically invariant coordinate to include the
equivalence of the octahedral and tetrahedral sites. But in a more
complicated multi-component or amorphous material system, it
is difficult to design such coordinates that take into account the
complex atomic local environments. Finally, it is also possible to
reconstruct global dynamics from the local dynamics. Since we
know how the four octahedral and eight tetrahedral sites are
connected in a FCC lattice, we can construct the 12 dimensional
global transition matrix from the 2 dimensional local transition
matrix (see Supplementary Note 2 for details). We obtain the
slowest global relaxation timescale to be 531 ps, which is close to
the observed slowest timescale of 528 ps from the global
dynamical model in Supplementary Fig. 1. Note that the timescale
from the two-state global model in Fig. 2 is less accurate since it
fails to learn the correct transition. In sum, the built-in
invariances in GCN provide a general approach to reduce the
complexity of learning atomic dynamics in material systems.
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Fig. 1 Illustration of the graph dynamical networks architecture. The MD
trajectories are represented by a series of graphs dynamically constructed
at each time step. The red nodes denote the target atoms whose dynamics
we are interested in, and the blue nodes denote the rest of the atoms. The
graphs are input to the same graph convolutional neural network to learn an
embedding vðKÞi for each atom that represents its local configuration. The
embeddings of the target atoms at t and t+ τ are merged to compute a
VAMP loss that minimizes the errors in Eq. (2)
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Silicon dynamics at a solid–liquid interface. To evaluate
the performance of the GDyNets with VAMP loss for a more
complicated system, we study the dynamics of silicon atoms at a
binary solid–liquid interface. Understanding the dynamics at
interfaces is notoriously difficult due to the complex local

structures formed during phase transitions25,26. As shown in
Fig. 3a, an equilibrium system made of two crystalline Si {110}
surfaces and a liquid Si–Au solution is constructed at the eutectic
point (629 K, 23.4% Si27) and simulated for 25 ns using MD. We
train and validate a four-state model using the first 12.5 ns tra-
jectory, and use it to identify the dynamics of Si atoms in the last
12.5 ns trajectory. Note that we only use the Si atoms in the liquid
phase and the first two layers of the solid {110} surfaces as the
target atoms (Fig. 3b). This is because the Koopman models are
optimized for finding the slowest transition in the system, and
including additional solid Si atoms will result in a model that
learns the slower Si hopping in the solid phase which is not our
focus.

In Fig. 3b, c, the model identified four states that are crucial for
the Si dynamics at the solid–liquid interface – liquid Si at the
interface (state 0), solid Si (state 1), solid Si at the interface (state
2), and liquid Si (state 3). These states provide a more detailed
description of the solid–liquid interface structure than conven-
tional methods. In Supplementary Fig. 2, we compare our results
with the distribution of the q3 order parameter of the Si atoms in
the system, which measures how much a site deviates from a
diamond-like structure and is often used for studying Si
interfaces28. We learn from the comparison that (1) our method
successfully identifies the bulk liquid and solid states, and learns
additional interface states that cannot be obtained from q3; (2) the
states learned by our method are more robust due to access to
dynamical information, while q3 can be affected by the accidental
ordered structures in the liquid phase; (3) q3 is system specific
and only works for diamond-like structures, but the GDyNets can
potentially be applied to any material given the MD data.

In addition, important dynamical processes at the solid–liquid
interface can be learned with the model. Remarkably, the model
identified the relaxation process of the solid–liquid transition
with a timescale of 538 ns (Fig. 3d, e), which is one order of
magnitude longer than the simulation time of 12.5 ns. This is
because the large number of Si atoms in the material system
provide an ensemble of independent trajectories that enable the
identification of rare events29–31. The other two relaxation
processes correspond to the transitions of solid Si atoms into/
out of the interface (73.2 ns) and liquid Si atoms into/out of the
interface (2.26 ns), respectively. These processes are difficult to
obtain with conventional methods due to the complex structures
at solid–liquid interfaces, and the results are consistent with our
understanding that the former solid relaxation is significantly
slower than the latter liquid relaxation. Finally, the model
performs excellently in the CK test on predicting the long-time
dynamics.

Lithium ion dynamics in polymer electrolytes. Finally, we apply
GDyNets with VAMP loss to study the dynamics of lithium ions
(Li-ions) in solid polymer electrolytes (SPEs), an amorphous
material system composed of multiple chemical species. SPEs are
candidates for next-generation battery technology due to their
safety, stability, and low manufacturing cost, but they suffer from
low Li-ion conductivity compared with liquid electrolytes32,33.
Understanding the key dynamics that affect the transport of Li-
ions is important to the improvement of Li-ion conductivity
in SPEs.

We focus on the state-of-the-art33 SPE system—a mixture of
poly(ethylene oxide) (PEO) and lithium bis-trifluoromethyl
sulfonimide (LiTFSI) with Li/EO= 0.05 and a degree of
polymerization of 50, as shown in Fig. 4a. Five independent
80 ns trajectories are generated to model the Li-ion transport at
363 K, following the same approach as described in ref. 67. We
train a four-state GDyNet with one of the trajectories, and use the
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Fig. 2 A two-state dynamic model learned for a lithium ion in the face-
centered cubic lattice. a Structure of the FCC lattice and the relative
energies of the tetrahedral and octahedral sites. b–d Comparison between
the local dynamics (left) learned with GDyNet and the global dynamics
(right) learned with a standard VAMPnet. b Relaxation timescales
computed from the Koopman models as a function of the lag time. The
black lines are reference lines where the relaxation timescale equals to the
lag time. c Assignment of the two states in the FCC lattice. The color
denotes the probability of being in state 0, which corresponds to one of the
two states that has a larger population. d CK test comparing the long-
time dynamics predicted by Koopman models at τ= 10 ps (blue) and actual
dynamics (red). The shaded areas and error bars in b, d report the 95%
confidence interval from five independent trajectories by dividing the test
data equally into chunks
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model to identify the dynamics of Li-ions in the remaining four
trajectories. The model identified four different solvation
environments, i.e. states, for the Li-ions in the SPE. In Fig. 4b,
the state 0 Li-ion has a population of 50.6 ± 0.8%, and it is
coordinated by a PEO chain on one side and a TFSI anion on the
other side. The state 1 has a similar structure as state 0 with a
population of 27.3 ± 0.4%, but the Li-ion is coordinated by a
hydroxyl group on the PEO side rather than an oxygen. In state 2,
the Li-ion is completely coordinated by TFSI anion ions, which
has a population of 15.1 ± 0.4%. And the state 3 Li-ion is
coordinated by PEO chains with a population of 7.0 ± 0.9%. Note
that the structures in Fig. 4b only show a representative
configuration for each state. We compute the element-wise radial
distribution function (RDF) for each state in Supplementary
Fig. 3 to demonstrate the average configurations, which is
consistent with the above description. We also analyze the total
charge carried by the Li-ions in each state considering their
solvation environments in Fig. 4c (see Supplementary Note 3 and
Supplementary Table 1 for details). Interestingly, both state 0 and
state 1 carry almost zero total charge in their first solvation shell
due to the one TFSI anion in their solvation environments.

We further study the transition between the four Li-ion states.
Three relaxation processes are identified in the dynamical model
as shown in Fig. 4d, e. By analyzing the eigenvectors, we learn
that the slowest relaxation is a process involving the transport of a
Li-ion into and out of a PEO coordinated environment. The
second slowest relaxation happens mainly between state 0 and
state 1, corresponding to a movement of the hydroxyl end group.
The transitions from state 0 to states 2 and 3 constitute the last
relaxation process, as state 0 can be thought of an intermediate
state between state 2 and state 3. The model performs well in CK
tests (Fig. 4f). Relaxation processes in the PEO/LiTFSI systems
have been extensively studied experimentally34,35, but it is

difficult to pinpoint the exact atomic scale dynamics related to
these relaxations. The dynamical model learned by GDyNet
provides additional insights into the understanding of Li-ion
transport in polymer electrolytes.

Implications to lithium ion conduction. The state configura-
tions and dynamical model allow us to further quantify the
transitions that are responsible for the Li-ion conduction. In
Fig. 5, we compute the contribution from each state transition to
the Li-ion conduction using the Koopman model at τ= 0.8 ns.
First, we learn that the majority of conduction results from
transitions within the same states (i→ i). This is because the
transport of Li-ions in PEO is strongly coupled with segmental
motion of the polymer chains8,36, in contrast to the hopping
mechanism in inorganic solid electrolytes37. In addition, due to
the low charge carried by state 0 and state 1, the majority of
charge conduction results from the diffusion of states 2 and 3,
despite their relatively low populations. Interestingly, the diffu-
sion of state 2, a negatively charged species, accounts for ~40% of
the Li-ion conduction. This provides an atomic scale explanation
to the recently observed negative transference number at high salt
concentration PEO/LiTFSI systems38.

Discussion
We have developed a general approach, GDyNets, to understand
the atomic scale dynamics in material systems. Despite being
widely used in biophysics31, fluid dynamics39, and kinetic model-
ing of chemical reactions40–42, Koopman models, (or Markov state
models31, master equation methods43,44) have not been used in
learning atomic scale dynamics in materials from MD simulations
except for a few examples in understanding solvent dynamics45–47.
Our approach also differs from several other unsupervised learning
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methods48–50 by directly learning a linear Koopman model from
MD data. Many crucial processes that affect the performance of
materials involve the local dynamics of atoms or small molecules,
like the dynamics of lithium ions in battery electrolytes51,52, the
transport of water and salt ions in water desalination
membranes53,54, the adsorption of gas molecules in metal organic
frameworks55,56, among many other examples. With the
improvement of computational power and continued increase in
the use of molecular dynamics to study materials, this work could
have broad applicability as a general framework for understanding
the atomic scale dynamics from MD trajectory data.

Compared with the Koopman models previously used in bio-
physics and fluid dynamics, the introduction of graph convolu-
tional neural networks enables parameter sharing between the
atoms and an encoding of local environments that is invariant to
permutation, rotation, and reflection. This symmetry facilitates
the identification of similar local environments throughout the
materials, which allows the learning of local dynamics instead of
exponentially more complicated global dynamics. In addition, it
is easy to extend this method to learn global dynamics with a
global pooling function18. However, a hierarchical pooling func-
tion is potentially needed to directly learn the global dynamics of
large biological systems including thousands of atoms. It is also
possible to represent the local environments using other sym-
metry functions like smooth overlap of atomic positions
(SOAP)57, social permutation invariant (SPRINT) coordinates58,
etc. By adding a few layers of neural networks, a similar archi-
tecture can be designed to learn the local dynamics of atoms.
However, these built-in invariances may also cause the Koopman
model to ignore dynamics between symmetrically equivalent
structures which might be important to the material performance.
One simple example is the flip of an ammonia molecule—the two
states are mirror symmetric to each other so the GCN will not be

able to differentiate them by design. This can potentially be
resolved by partially breaking the symmetry of GCN based on the
symmetry of the material systems.

The graph dynamical networks can be further improved by
incorporating ideas from both the fields of Koopman models and
graph neural networks. For instance, the auto-encoder
architecture12,59,60 and deep generative models61 start to enable
the direct generation of future structures in the configuration
space. Our method currently lacks a generative component, but
this can potentially be achieved with a proper graph decoder62,63.
Furthermore, transfer learning on graph embeddings may reduce

0 1 2 3
States

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

E
ig

en
ve

ct
or

s

0 1 2 3
States

0 1 2 3
States

a

Li+

PEO

TFSI–

b

State 0 State 1

State 2 State 3

c

0 2 4 6 8 10

Radius (Å)

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

C
ha

rg
e 

in
te

gr
al

State 0
State 1
State 2
State 3

d fe

0 2 4 6

Lag time (ns)

10–2

10–1

100

101

T
im

es
ca

le
s 

(n
s)

0

1 0->0 0->1 0->2 0->3

0

1 1->0 1->1 1->2 1->3

0

1 2->0 2->1 2->2 2->3

0

1 3->0 3->1 3->2

0 3 6 0 3 6 0 3 6 0 3 6

3->3

(ns)

3.6 ns 2.8 ns 2.3 ns

Fig. 4 A four-state dynamical model learned for lithium ion in a PEO/LiTFSI polymer electrolyte. a Structure of the PEO/LiTFSI polymer electrolyte.
b Representative configurations of the four Li-ion states learned by the dynamical model. c Charge integral of each state around a Li-ion as a function of
radius. d Relaxation timescales computed from the Koopman models as a function of the lag time. The black lines are reference lines where the relaxation
timescale equals to the lag time. e Eigenvectors projected to each state for the three relaxations of Koopman models at τ= 0.8 ns. f CK test comparing the
long-time dynamics predicted by Koopman models at τ= 0.8 ns (blue) and actual dynamics (red). The shaded areas and error bars in d, f report the 95%
confidence interval from four independent trajectories in the test data

i

0
1

2
3

j

0

1

2

3

C
on

du
ct

iv
ity

 c
on

tr
ib

ut
io

n

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Fig. 5 Contribution from each transition to lithium ion conduction. Each bar
denotes the percentage that the transition from state i to state j contributes
to the overall lithium ion conduction. The error bars report the 95%
confidence interval from four independent trajectories in test data

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10663-6

6 NATURE COMMUNICATIONS |         (2019) 10:2667 | https://doi.org/10.1038/s41467-019-10663-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


the number of MD trajectories needed for learning the
dynamics64,65.

In summary, graph dynamical networks present a general
approach for understanding the atomic scale dynamics in mate-
rials. With a toy system of lithium ion transporting in a face-
centered cubic lattice, we demonstrate that learning local
dynamics of atoms can be exponentially easier than global
dynamics in material systems with representative local structures.
The dynamics learned from two more complicated systems,
solid–liquid interfaces and solid polymer electrolytes, indicate the
potential of applying the method to a wide range of material
systems and understanding atomic dynamics that are crucial to
their performances.

Methods
Construction of the graphs from trajectory. A separate graph is constructed
using the configuration in each time step. Each atom in the simulation box is
represented by a node i whose embedding vi is initialized randomly according to
the element type. The edges are determined by connecting M nearest neighbors
whose embedding u(i,j) is calculated by,

uði;jÞ½t� ¼ expð�ðdði;jÞ � μtÞ2=σ2Þ; ð7Þ
where μt= t · 0.2 Å for t= 0, 1, …, K, σ= 0.2 Å, and d(i,j) denotes the distance
between i and j considering the periodic boundary conditions. The number of
nearest neighbors M is 12, 20, and 20 for the toy system, Si–Au binary system, and
PEO/LiTFSI system, respectively.

Graph convolutional neural network architecture details. The convolution
function we employed in this work is similar to those in refs. 18,22 but features an
attention layer66. For each node i, we first concatenate neighbor vectors from

the last iteration zðt�1Þ
ði;jÞ ¼ vðt�1Þ

i � vðt�1Þ
j � uði;jÞ, then we compute the attention

coefficient of each neighbor,

αij ¼
expðzðt�1Þ

ði;jÞ Wðt�1Þ
a þ bðt�1Þ

a Þ
P
j
expðzðt�1Þ

ði;jÞ Wðt�1Þ
a þ bðt�1Þ

a Þ
; ð8Þ

where Wðt�1Þ
a and bðt�1Þ

a denotes the weights and biases of the attention layers and
the output αij is a scalar number between 0 and 1. Finally, we compute the
embedding of node i by,

vðtÞi ¼ vðt�1Þ
i þ

X
j

αij � gðzðt�1Þ
ði;jÞ Wðt�1Þ

n þ bðt�1Þ
n Þ; ð9Þ

where g denotes a non-linear ReLU activation function, and Wðt�1Þ
n and bðt�1Þ

n
denotes weights and biases in the network.

The pooling function computes the average of the embeddings of each atom for
the set of target atoms,

v½l� ¼
1
k

X
m

v½l;m�: ð10Þ

Determination of the relaxation timescales. The relaxation timescales represent
the characteristic timescales implied by the transition matrix K(τ), where τ denotes
the lag time of the transition matrix. By conducting an eigenvalue decomposition
for K(τ), we could compute the relaxation timescales as a function of lag time by,

tiðτÞ ¼ � τ

ln jλiðτÞj
; ð11Þ

where λi(τ) denotes the ith eigenvalue of the transition matrix K. Note that the
largest eigenvalue is alway 1, corresponding to infinite relaxation timescale and the
equilibrium distribution. The finite ti(τ) are plotted in Figs. 2b, 3d, and 4d for each
material system as a function of τ by performing this computation using the
corresponding K(τ). If the dynamics of the system is Markovian, i.e. Eq. (6) holds,
one can prove that the relaxation timescales ti(τ) will be constant for any τ13,24.
Therefore, we select a smallest τ* from Figs. 2b, 3d, and 4d to obtain a dynamical
model that is Markovian and contains most dynamical details. We then compute
the relaxation timescales using this τ* for each material system, and these time-
scales remain constant for any τ > τ*.

State-weighted radial distribution function. The RDF describes how particle
density varies as a function of distance from a reference particle. The RDF is
usually determined by counting the neighbor atoms at different distances over MD
trajectories. We calculate the RDF of each state by weighting the counting process

according to the probability of the reference particle being in state i,

giðrAÞ ¼
1
ρi

d½nðrAÞ � pi�
4πr2AdrA

; ð12Þ

where rA denotes the distance between atom A and the reference particle,
pi denotes the probability of the reference particle being in state i, and ρi denotes
the average density of state i.

Analysis of Li-ion conduction. We first compute the expected mean-squared-
displacement of each transition at different t using the Bayesian rule,

E½d2ðtÞji ! j� ¼
P
t′
d2ðt′; t′þ tÞpiðt′Þpjðt′þ tÞ

P
t′
piðt′Þpjðt′þ tÞ ; ð13Þ

where pi (t) is the probability of state i at time t, and d2(t′, t′+ t) is the
mean-squared-displacement between t′ and t′+ t. Then, the diffusion coefficient of
each transition Di→j(τ) at the lag time τ can be calculated by,

DijðτÞ ¼
1
6
dE½d2ðtÞji ! j�

dt

����
t¼τ

; ð14Þ

which is shown in Supplementary Table 2.
Finally, we compute the contribution of each transition to Li-ion conduction

with Koopman matrix K(τ) using the cluster Nernst-Einstein equation67,

σ ij ¼
e2NLi

VkBT
πizijKijðτÞDijðτÞ; ð15Þ

where e is the elementary charge, kB is the Boltzmann constant, V, T are the volume
and temperature of the system, NLi is the number of Li-ions, πi is the stationary
distribution population of state i, and zij is the averaged charge of state i and state j.
The percentage contribution is computed by,

σijP
i;j
σ ij

: ð16Þ

Lithium diffusion in the FCC lattice toy system. The molecular dynamics
simulations are performed using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS)68, as implemented in the MedeA®69 simulation
environment. A purely repulsive interatomic potential in the form of a
Born–Mayer term was used to describe the interactions between Li particles
and the S sublattice, while all other interactions (Li–Li and S–S) are ignored.
The cubic unit cell includes one Li atom and four S atoms, with a lattice
parameter of 6.5 Å, a large value allowing for a low energy barrier. 200 ns
MD simulations are run in the canonical ensemble (nVT) at a temperature
of 64 K, using a timestep of 1 fs, with the S particles frozen. The atomic posi-
tions, which constituted the only data provided to the GDyNet and VAMPnet
models, are sampled every 0.1 ps. In addition, the energy following the Tet-Oct-
Tet migration path was obtained from static simulations by inserting Li particles
on a grid.

Silicon dynamics at solid–liquid interface. The molecular dynamics simulation
for the Si–Au binary system was carried out in LAMMPS68, using the modified
embedded-atom method interatomic potential27,28. A sandwich like initial con-
figuration was created, where Si–Au liquid alloy was placed in the middle, con-
tacting with two {110} orientated crystalline Si thin films. 25 ns MD simulations are
run in the canonical ensemble (nVT) at the eutectic point (629 K, 23.4% Si27),
using a time step of 1 fs. The atomic positions, which constituted the only data
provided to the GDyNet model, are sampled every 20 ps.

Scaling of the algorithm. The scaling of the GDyNet algorithm is OðNMKÞ,
where N is the number of atoms in the simulation box, M is the number
of neighbors used in graph construction, and K is the depth of the neural
network.

Data availability
The MD simulation trajectories of the toy system, the Si–Au binary system, and the PEO/
LiTFSI system are available at https://archive.materialscloud.org/2019.0017.

Code availability
GDyNets is implemented using TensorFlow70 and the code for the VAMP loss function
is modified on top of ref. 13. The code is available from https://github.com/txie-93/
gdynet.
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