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The combination of high throughput computation and machine learning has led to a new paradigm
in materials design by allowing for the direct screening of vast portions of structural, chemical, and
property spaces. The use of these powerful techniques leads to the generation of enormous amounts
of data, which in turn calls for new techniques to efficiently explore and visualize the materials space
to help identify underlying patterns. In this work, we develop a unified framework to hierarchically
visualize the compositional and structural similarities between materials in an arbitrary material
space with representations learned from different layers of graph convolutional neural networks.
We demonstrate the potential for such a visualization approach by showing that patterns emerge
automatically that reflect similarities at different scales in three representative classes of materials:
perovskites, elemental boron, and general inorganic crystals, covering material spaces of different
compositions, structures, and both. For perovskites, elemental similarities are learned that reflects
multiple aspects of atom properties. For elemental boron, structural motifs emerge automatically
showing characteristic boron local environments. For inorganic crystals, the similarity and stability
of local coordination environments are shown combining different center and neighbor atoms. The
method could help transition to a data-centered exploration of materials space in automated materials

design. Published by AIP Publishing. https://doi.org/10.1063/1.5047803

l. INTRODUCTION

Efficient exploration of the materials space has been cen-
tral to material discovery as a result of the limited experi-
mental and computational resources compared with its vast
size. Often compositional or structural patterns are sought from
past experiences that might guide the design of new materials,
improving the efficiency of material exploration.!™ Emerg-
ing high-throughput computation and machine learning tech-
niques directly screen large amounts of candidate materials for
specific applications,®!3 which enables fast and direct explo-
ration of the materials space. However, the large quantities of
material data generated makes the discovery of patterns chal-
lenging with traditional, human-centered approaches. Instead,
an automated, data-centered method to visualize and under-
stand a given materials design phase space is needed in order
to improve the efficiency of exploration.

The key in visualizing material space is to map mate-
rials with different compositions and structures into a lower
dimensional manifold where the similarity between materi-
als can be measured by their Euclidean distances. One major
challenge in finding such manifolds is to develop a unified
representation for different materials. A widely used method
is representing materials with feature vectors, where a set of
descriptors are selected to represent each material.'*~'® There
are also methods that automatically select descriptors that are
best for predicting a desired target property.!” Recent work
has also developed atomic-scale representations to map com-
plex atom configurations into low dimensional manifolds, such
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as atom centered symmetry functions,'® social permutation

invariant (SPRINT) coordinates, '’ global minimum of root-
mean-square distance,”’ smooth overlap of atomic positions
(SOAP),”! among many other methods.”>>* These repre-
sentations often have physically meaningful parameters that
can highlight some structural or chemical features. Material
descriptors and atomic representations are also used together to
combine compositional and structural information.”>>> They
have been used to visualize the material and molecular similar-
ities,”628 as well as explore the complex configurational space
of biological systems>®=32 and water structures.*>** In addi-
tion to Euclidean distances, similarity kernels are also used
to compare material similarities.?”-* Combined with machine
learning algorithms, these representations have been used to
predict material properties!>!4-17-2233.36 a5 well as construct
force fields.?!-¥7-38

In parallel to these efforts, the success of “deep learn-
ing” has inspired a group of representations purely based on
neural networks. Instead of designing descriptors or atomic
representations that are fixed or contain several physically
meaningful parameters, these approaches use relatively gen-
eral neural network architectures with a large number of train-
able weights to learn a representation directly. This field started
with building neural networks on molecular graphs®*—*? and
was recently expanded to periodic material systems by us*?
and Schiitt et al.** Deep neural networks have shown many
advantages over conventional machine learning methods in
computer vision and speech recognition with the large amounts
of data available,® and they outperformed conventional

Published by AIP Publishing.
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methods on 11/17 datasets for predicting molecular proper-
ties in a recent study.*® However, the general neural network
architecture may also limit performance when the data size
is small since there is no material specific information built-
in. It is worth noting that many machine learning force fields
combine atomic representations and neural networks,!837:47
but they usually deal with different compositions separately
and use a significantly smaller number of weights. It has been
shown that the hidden layers of these neural networks can learn
physically meaningful representations by proper design of the
network architecture. For instance, several studies have inves-
tigated the ideas of learning atom energies*>*>*® and elemental
similarities.**-° In addition, recent work showed that elemen-
tal similarities can also be learned using a specially designed
SOAP kernel.”!

In this work, we aim to develop a unified framework to
hierarchically visualize the compositional and structural sim-
ilarities between materials in an arbitrary material space with
representations learned from different layers of the neural
networks. The network is based on a variant of our previ-
ously developed crystal graph convolutional neural network
(CGCNN) framework,* but it is designed to focus on pre-
senting the similarities between materials at different scales,
including elemental similarities, local environment similari-
ties, and local energies. We apply this approach to visualize
three material spaces: perovskites, elemental boron, and gen-
eral inorganic crystals, covering material spaces of different
compositions, different structures, and both, respectively. We
show that in all three cases, a pattern emerges automatically
that might aid in the design of new materials.

Il. METHODS

To visualize the crystal space at different scales, we design
a variant of CGCNN* that has meaningful interpretation at
different layers of the neural network. The learned CGCNN
network provides a vector representation of the local environ-
ments in each crystal that only depends on its composition and
structure without any human designed features, enabling us to
explore the materials space hierarchically.

As shown in Fig. 1, we first represent the crystal structure
with a multigraph G that encodes the connectivity of atoms in
the crystal. Each atom is represented by a node i in G which
stores a vector v; corresponding to the element type of the
atom. To avoid introducing any human bias, we initialize v; to
be a random 64 dimensional vector for each element and allow
it to evolve during the training process. Then, we search for
the 12 nearest neighbors for each atom and introduce an edge

...........................

FIG. 1. The structure of the crystal graph convolutional neural networks.
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(i, j)x between the center node i and neighbor j. The subscript
k indicates that there can be multiple edges between the same
end nodes as a result of the periodicity of the crystal. The edge
(7, J)r stores a vector u; j, whose tth element depends on the
distance between i and j by

uijy [t] = exp(—(dijy, — pe)* /), (1)

where 1, =102 Afort=0,1,...,40,0 =02 A, and d;; ),
denotes the distance between i and j at their kth edge.

In graph G, each atom i is initialized by a vector v; whose
value solely depends on the element type of atom i. We call
this iteration 0 where
vgo) =v; 2)

Then, we perform convolution operations on the multi-
graph G with the convolution function designed in Ref. 43
which allows atom i to interact with its neighbors itera-
tively. In iteration #, we first concatenate neighbor vectors

Eg)lk) = vEH) & vj(.H) ®u; ), and then perform the convolution
by

0 _ 0D (-Dyya-D 4 p-D
vl =Y +Zk:[‘7(z<i,i>k Wi +by )
Js

08, Wi+ V)], 3)
where © denotes element-wise multiplication, o= denotes a
sigmoid function, and g denotes any non-linear activation func-
tion, and W and b denote weights and biases in the neural
network, respectively. During these convolution operations,
vgt) forms a series of representations of the local environments
of atom i at different scales.

After K iterations, we perform a linear transformation to
map vEK) to a scalar Ej,

Ei=vOW,+h 4)

and then use a normalized sum pooling to predict the averaged
total energy per atom of the crystal,

1
E= ;Za, 5)

where n is the number of atoms in the crystal. This introduces
a physically meaningful term E; to represent the energy of the
local chemical environment.

The model is trained by minimizing the squared error
between predicted properties relative to the density functional
theory (DFT) calculated properties using backpropagation and
stochastic gradient descent.

In this CGCNN model, each vector represents the local
environment of each atom at different scales. Here, we
focus three vectors that have the most representative physical
interpretations.

1. Element representation 050) that depends completely on
the type of element that atom i is composed of since no
convolution operation has been performed, describing the
similarities between elements.

2. Local environment representation vEK) that depends on
atom / and its Kth order neighbors after K convolution
operations, describing the similarities between local envi-
ronments that combines the compositional and structural
information.
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3. Local energy representation E; that describes the energy
of atom i.

lll. RESULTS AND DISCUSSIONS

To illustrate how this method can help visualize the com-
positional and the structural aspects of the crystal space,
we apply it to three datasets that represent different mate-
rial spaces: (1) a group of perovskite crystals that share the
same structure type but have different compositions; (2) dif-
ferent configurations of elemental boron that share the same
composition but have different structures; and (3) inorganic
crystals from the Materials Project> that have both different
compositions and different structures.

For each material space, we train the CGCNN model
with 60% of the data to predict the energy per atom of the
materials. 20% of the data are used to select hyperparame-
ters of the model and the last 20% are reserved for testing.
In Fig. 2, we show the learning curves for the three represen-
tative material spaces where a subset of training data is used
to show how the number of training data affects the model
prediction performance. As we will show below, the represen-
tations learned by predicting the energies automatically gain
physical meanings and can be used to explore the materials
spaces.

A. Perovskite: Compositional space

First, we explore the compositional space of perovskites
by visualizing the element representations. Perovskite is a
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FIG. 2. Learning curves for the three representative material spaces. The
mean absolute errors (MAEs) on test data is shown as a function of the num-
ber of training data for the perovskites,53*54 elemental boron,48 and Materials
Project>? datasets.

crystal structure type with the form of ABC3 as shown in
Fig. 3(a). The dataset>>-* that we used includes 18928 dif-
ferent perovskites where the elements A and B can be any
nonradioactive metals and the element C can be one or several
from O, N, S, and F. We trained our model to predict the energy
above the hull with 15000 training data, and after hyperpa-
rameter optimization on 1890 validation data, we achieve a
prediction mean absolute error (MAE) of 0.042 eV/atom on
the 2000 test data. The prediction performance is excellent and
lower than several recent ML models such as those of Schmidt
etal. (0.121 eV/atom)*® and Xie et al. (0.099 eV/atom).** The
learning curve in Fig. 2 shows a straight line in the log-log
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FIG. 3. Visualization of the element representations learned from the perovskite dataset. (a) The perovskite structure type. (b) Visualization of the two principal
dimensions with principal component analysis. (c) Prediction performance of several atom properties, including the element block, group number, atom radius,

and electronegativity, using a linear model on the element representations.
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scale, indicating a steady increase of prediction performance
as the number of training data increases.

In Figs. 3(b) and 3(c), the element representation vgo),
a 64 dimensional vector, is visualized for every nonra-
dioactive metal element after training with the perovskite
dataset. Figure 3(b) shows the projection of these element
representations on a 2D plane using principal component anal-
ysis, where elements are colored according to their elemental
groups. We can clearly see that similar elements are grouped
together based on their stability in perovskite structures. For
instance, alkali metals are grouped on the right of the plot due
to their similar properties. The large alkaline earth metals (Ba,
Se, and Ca) are grouped on the bottom, distinct from Mg and
Be, because their larger radii stabilize them in the perovskite
structure. On the left side are elements such as W, Mo, and Ta
that favor octahedral coordinations due to their configuration
of d electrons, which might be related to their extra stability
in the B site.** Interestingly, we can also observe a trend of
decreasing atom radius from the bottom of the plot to the top, as
shown in the insert of Fig. 3(b), except for the alkali metals as
outliers. This indicates that CGCNN learns the atom radius as
an important feature for perovskite stability. Recently, Schiitt
et al. also discovered a similar grouping of elements with data
from the Materials Project.** In general, these visualizations
can help discover similarities between elements for designing
novel perovskite structures.

We also study how the element representations evolve
as the number of training data changes. In Fig. S1, we show
the 2D projections of the element representations when 234,
937, 3750, and 15000 training data are used, respectively.

J. Chem. Phys. 149, 174111 (2018)

The projection looks completely random with 234 training
data, and some patterns start to emerge when 937 training
data are used. In Fig. S1(b), transition metals are grouped on
top of the figure, while large metals like La, Ca, Sr, Ba, and
Cs are grouped at the bottom. With 3750 training data, the
figure is already close to Fig. 3(b) and the relation between
atom radius and the second dimension is clear. Figure 3(b)
and Fig. S1(d) are almost identical after rotations because
they both use 15000 training data. Note that these represen-
tations start from different random initializations, but they
resultin similar patterns after training with the same perovskite
data.

These 2D plots only account for part of the
64-dimensional element representation vectors. To fully
understand how element properties are learned by CGCNN,
we use linear logistic regression (LR) models to predict the
block type, group number, radius, and electronegativity of
each element from their learned representation vectors. In
Fig. 3(c), we show the 3-fold cross validation accuracy of
the LR models and compare them with LR models learned
from random representations, which helps to rule out the
possibility that the predictions are caused by coincidences.
We discover a significantly higher prediction accuracy of the
learned representations for all four properties, demonstrating
that the element representations can reflect multiple aspects
of element properties. For instance, the model predicts the
block of the element with over 90% accuracy, and the same
representation also predicts the group number, radius, and
electronegativity with over 60% accuracy. This is surprising
considering that these elements are from 16 different elemental
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FIG. 4. Visualization of the local environment representations learned from the elemental boron dataset. The original 64D vectors are reduced to 2D with the
t-distributed stochastic neighbor embedding algorithm. The color of each plot is coded with learned local energy (a), number of neighbors calculated by the
Pymatgen package’ (b), and density (c). Representative boron local environments are shown with the center atom colored in red.
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groups. Itis worth noting that these representations are learned
only from the perovskite structures and the total energy
above hull, but they are in agreement with these empiri-
cal element properties reflecting decades of human chemical
intuition.

B. Elemental boron: Structural space

As a second example, we explore the structural space of
elemental boron by visualizing the local environment represen-
tations and the corresponding local energies. Elemental boron
has a number of complex crystal structures due to its unique,
electron-deficient bonding nature.*®>® We use a dataset that
includes 5038 distinct elemental boron structures and their
total energies calculated using density functional theory.*® We
train our CGCNN model with 3038 structures, and perform
hyperparameter optimization with 1000 validation structures.
The MAE of the predicted energy relative to DFT results from
the remaining 1000 test structures is 0.085 eV/atom. The learn-
ing curve in Fig. 2 shows a much smaller slope compared with
the other material spaces. One explanation is that there exist
many highly unstable boron structures in the dataset, whose
energies might be hard to predict given the limited structures
covered by the training data.

In Fig. 4, 1000 randomly sampled boron local environ-
ment representations are visualized in 2 dimensions using
the t-distributed stochastic neighbor embedding (t-SNE) algo-
rithm.>” We observe primarily four different regions of dif-
ferent boron local environments, and we discover a smooth
transition of local energy, number of neighbor atoms, and the
density between different regions. The disconnected region
consists of boron atoms at the edges of boron clusters [Fig.
4 and Figs. S1(a)-S1(c)]. These atoms have very high local
energies and lower number of neighbors, as to be expected,
and their density varies depending on the distances between
clusters. The amorphous region includes boron atoms in a rel-
atively disordered local configuration, and their local energies
are lower than the disconnected counterparts but higher than
other configurations [Fig. 4 and Figs. S1(d)-S1(f)]. We can see
that the number of neighbors fluctuates drastically in these two
regions due to the relatively disordered local structures. The
layered region is composed of boron atoms in layered boron
planes, where neighbors on one side are closely bonded and
the neighbors on the other side are further away [Fig. 4 and
Figs. S1(g)-S1()]. The By, icosahedron region includes boron
local environments with the lowest local energy, which have
a characteristic icosahedron structure [Fig. 4 and Figs. S1(j)—
S1(1)]. The local environments in each region share common
characteristics but are slightly different in detail. For instance,
most boron atoms in the B, icosahedron region are in a slightly
distorted icosahedron, and the local environments in Fig. S1(1)
only have certain features of an icosahedron. Note that these
representations are rather localized. The global structure of
Fig. S1(c) is layered, but the representation of the highlighted
atom at the edge is closer to the disconnected region locally.
Some experimentally observed boron structures, like boron
fullerenes, are not present in the dataset. We calculate the local
environment representations of every distinct boron atom of
two boron fullerenes®® using the trained CGCNN, and plot

J. Chem. Phys. 149, 174111 (2018)

TABLE I. Comparison of the prediction performance of formation energy
per atom. The mean absolute errors (MAEs) on test data reported in several
recent studies are summarized. Data are from several different but similar
inorganic crystal material datasets. MP represents Materials Project,’> OQMD
represents the open quantum materials database,®! and the ternary compounds
are AxByC, compounds calculated by Ref. 15.

Method MAE (eV/atom) Data source  Training size
This work 0.042 MP 28 046
CGCNN# 0.039 MP 28 046
SchNet* 0.035 MP 60000
Genéreélzized coulomb 037 MP 3000
matrix
Decision t Tt

ecmf)n. rleses 0.12 ernary 15000
+ heuristic compounds
Voronoi + composition® 0.08 OQMD 30000
QML?3 ~0.11 OQMD 2000
Random sub

ancom stospace 0.088 OQMD 228676
+ REPTree

them into the original 2D visualization in Fig. S3. They form
a small cluster close to the B, icosahedron region, which can
be explained by the fact that they share many common char-
acteristics to the B, icosahedron structure. In addition, the
representations of the less symmetric B4o(Cy) are more spread
out than the more symmetric B4o(D;4). Note that the pattern
in Fig. S3 is slightly different from that in Fig. 4 due to the
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FIG. 5. Visualization of the local oxygen (a) and sulfur (b) coordination envi-
ronments. The points are labeled according to the type of the center atoms
in the coordination environments. The colors of the left parts are coded
with learned local energies, and the color of the right parts are coded with
number of neighbors,55 octahedron order parameter, and tetrahedron order
parameter.>’
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random nature of the t-SNE algorithm, but the overall structure
of the patterns is preserved.

Taken together, such a visualization approach provides
a convenient way to explore complex boron configurations,
enabling the identification of characteristic structures and
systematic exploration of structural space.

C. Materials Project: Compositional
and structural space

As a third example of applying this approach, we explore
the material space of crystals in the Materials Project dataset,>”
which includes both compositional and structural differences,
by visualizing the element representation, local environ-
ment representation, and the local energy representation. The
dataset includes 46 744 materials that cover the majority of
crystals from the Inorganic Crystal Structure Database,’” pro-
viding a good representation of known inorganic materials.
After training with 28 046 crystals and performing hyperpa-
rameter optimization with 9348 crystals, our model achieves
a MAE of predicted energy relative to DFT calculations

Center atom
>
Q.

— %)
TEE3mIPFErS
gttt
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on the 9348 test crystals of 0.042 eV/atom, slightly higher
than the MAE of our previous work, 0.039 eV/atom, with
a CGCNN structure focusing on prediction performance.*?
The learning curve in Fig. 2 is similar to that of the per-
ovskites dataset, which might indicate a similar prediction
performance to the datasets that are composed of stable
inorganic compounds. In Table I, we compare the prediction
performance of this method with several recently published
studies.

In Fig. S2, the element representation of 89 elements
learned from the dataset is shown using the same method as
that used to generate Fig. 3(b). We observe a similar grouping
of elements from the same elemental groups, but the overall
pattern differs since it reflects the stability of each element in
general inorganic crystals rather than perovskites. For instance,
the non-metal and halogen elements stand out because their
properties deviate from other metallic elements.

To illustrate how the compositional and structural spaces
can be explored simultaneously, we visualize the oxy-
gen and sulfur coordination environments in the Materials
Project dataset using the local environment representation

- 25

- 0.0
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FIG. 6. The averaged local energy of 734 077 distinct coordination environments in the Materials Project dataset. The color is coded with the average of learned
local energies while having the corresponding elements as the center atom and the first neighbor atom. White is used when no such coordination environment

exists in the dataset.
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and local energy. 1000 oxygen and 803 sulfur coordination
environments are randomly selected and visualized using the
t-SNE algorithm. As shown in Fig. 5(a), the oxygen coordi-
nation environments are clustered into 4 major groups. The
upper right group has the center atom of non-metal elements
like P, Al, Si, forming tetrahedron coordinations. The cen-
ter atoms of the upper left environments are mostly tran-
sition metals, and they mostly form octahedron coordina-
tions. The lower left group has center atoms of alkali metals,
and the lower right group has those of alkaline earth met-
als and lanthanides which have larger radii and therefore
higher coordination numbers. The sulfur coordination envi-
ronment visualization [Fig. 5(b)] shares similar patterns due
to the similarities between oxygen and sulfur, and a similar
four-cluster structure can be observed. However, instead of
non-metal elements, the lower center group has center atoms
of metalloids like Ge, Sn, and Sb since these elements will be
more stable in a sulfur with respect to an oxygen coordination
environment.

The local energies of oxygen and sulfur coordination
environments are determined by their relative stability to the
pure elemental states since the model is trained using for-
mation energy data, which treats the pure elemental states
as the reference energy states. In Fig. S3, we show the
change of oxygen and sulfur local energies as a function of
atomic number. We can clearly see that it follows a simi-
lar trend as the electronegativity of the elements: elements
with lower electronegativity tend to have lower local energy
and vice versa. This is because elements with lower elec-
tronegativity tend to give the oxygen and sulfur more elec-
trons and thus form stronger bonds. The local energies of
alkali metals are slightly higher since they form weaker ionic
bonds due to lower charges. Interestingly, the strong cova-
lent bonds between oxygen and Al, Si, P, S result in a
V-shaped curve in the figure, with Si—O environments having
the lowest energy, which contrasts the trend of electronegativ-
ity and sulfur coordination environments, whose local energies
are dominated by the strength of ionic bonds. We also observe
alarger span of local energies in oxygen coordination environ-
ments than their sulfur counterparts due to the stronger ionic
interactions.

Inspired by these results, we visualize the averaged local
energy of 734077 distinct coordination environments in the
Materials Project by combining different center and neigh-
bor atoms in Fig. 6. This figure illustrates the stability of
the local coordination environment while combining the cor-
responding center and neighbor elements. The diagonal line
represents coordination environments made up with the same
elements with local energies close to zero, which corresponds
to elemental substances with zero formation energy. The coor-
dination environments with lowest local energy consist of
high valence metals and high electronegativity non-metals,
which can be explained by the large cohesive energies due
to strong ionic bonds. One abnormality is the stable Al-O,
Si—-0O, P-0, S-O coordination environments, although this
can be attributed to their strong covalent bonds. We can also
see that Tm-H coordination stands out as a stable hydrogen
solid solution. It is worth noting that each local energy in
Fig. 6 is the average of many coordination environments with
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different shapes and outer layer chemistries, and we can obtain
more information by using additional visualizations similar to
Fig. 5.

IV. CONCLUSION

In summary, we developed a unified approach to visu-
alize the compositional and structural space of materials.
The method provides hierarchical representations of the local
environments at different scales, which enables a general
framework to explore different material systems and measure
material similarities. The insights gained from the visualiza-
tions could help to discover patterns from a large pool of
candidate materials that may be impossible by human anal-
ysis, and provide guidance to the design of new materials. In
addition to energies, this method can potentially be applied to
other material properties for the exploration of novel functional
materials.

SUPPLEMENTARY MATERIAL

See supplementary material for the details of the hyper-
parameters for each model, the results of the effects of the
number of training data on element representations, additional
figures showing the structures of boron local environments
and the location of boron fullerene local environment repre-
sentations with respect to the representations of other boron
structures, the results of the element representations learned
from the Materials Project dataset, and the results of the change
of local energy as a function of the atomic number.
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