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Nanostructured materials are promising as thermoelectrics since thermal transport can be sup-
pressed with little degradation in electrical properties, a crucial requirement for high-efficiency ther-
mal energy conversion. Porous materials offer a flexible platform thanks to their extensive range of
possible configurations and robust nature compared to other nanostructures. Although there has
been great progress in modeling the thermal properties of nanoporous materials, it has remained a
challenge to screen such materials over a large phase space due to the slow simulation time required
for accurate results. This has left a gap in our ability to optimize nanoporous thermoelectrics both
in designing ordered, ideal porous structures as well as in understanding the role of pore disorder. In
this work, we use density functional theory in connection with the Boltzmann transport equation, to
perform high-throughput calculations of heat transport in disordered porous materials. By leverag-
ing graph theory and regressive analysis, we identify the set of pores representing the most effective
phonon bottleneck. The strength of such bottlenecks is assessed by the “repeated bottleneck” al-
gorithm, which ultimately provides a measure of the effect of disorder on thermal transport. These
results shed light on thermal conductivity reduction in disordered porous materials and provide a
simple tool to estimate phonon suppression in realistic porous materials.

INTRODUCTION

The efficient and inexpensive conversion of heat di-
rectly into electricity is a long-sought goal with enormous
potential in the clean-energy technology landscape [1].
The engineering of thermoelectric materials, however, is
particularly challenging because of the interrelation of
key physical properties constituting the thermoelectric

figure of merit ZT, defined as ZT = TσS2

κ where σ is
the electrical conductivity, κ is the lattice thermal con-
ductivity, S is the Seebeck coefficient, and T the tem-
perature. A powerful way to decouple the electrical and
thermal transport is given by nanostructuring. In most
semiconductors, the numerator of ZT, also referred to as
“power factor”, is maximized at relatively high carrier
concentrations so the dominant electron mean free path
(MFP) can be as small as few nanometers [2]. Conversely,
phonons may have much larger MFPs, even on the order
of microns [3]. Properly engineered nanostructures are
therefore able to scatter phonons more effectively than
electrons. Porous materials offer a highly tunable plat-
form thanks to great degree of structural tunability in-
cluding pore size, shape and arrangement, as well as the
potential for controllable uniform thin films, high tem-
perature resilience and and robust contacts. As an ex-
ample, the thermal conductivities of nanoporous Si have
been measured in many studies with the common find-
ing of a strong suppression of thermal transport, leading
to a significant improvement in experimentally measured
ZT [4–8]. On the computational level, several models
based on the Boltzmann Transport Equation (BTE) have
also shown low thermal conductivities and revealed im-
portant features of phonon-boundary scattering and fun-
damental thermal transport in nanoporous materials [9–
11]. Preliminary attempts aiming at tuning thermal con-

ductivity in nanoporous Si have shown that, even within
ordered configurations and with pores of the same size,
the pattern in the pores can have a large influence on
the resulting thermal transport [12]. Although aligned
configurations offer a robust platform for controllable
experiments, pore disorder is unavoidable, especially at
smaller length scales [13]. Recent Monte Carlo calcu-
lations [14, 15]investigated thermal transport in disor-
dered porous materials with circular pores and concluded
that the density of porous along the heat flux direction
has a significant influence on thermal conductivity. In
this work, we expand on this concept by developing a
method that identifies the actual set of pores represent-
ing the highest local resistance to phonon transport. To
this end, we use the recently developed first-principles
BTE solver [16] to perform high-throughput calculations
of thermal transport in random-pore configurations with
pores of circular and square shapes. Then, we establish
a correlation between the phonon suppression and the
pore arrangement within given configuration, leading to
the identification of the pores constituting the phonon
bottleneck. Upon introducing a simple descriptor repre-
senting the strength of this collection of pores, we find
a correlation between such a parameter and the effective
thermal conductivity κeff . Last, we estimate the effect
of pore disorder on thermal transport by means of the
“repeated-bottleneck” algorithm, a method that classi-
fies strong and weak phonon bottlenecks. This work can
be potentially used to estimate the degree of phonon sup-
pression in realistic nanoporous samples while avoiding
the computational burden of solving the BTE.
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PHONON BOLTZMANN TRANSPORT
EQUATION

Our computational approach is based on recent im-
plementation of the BTE for phonons, which under the
relaxation time approximations, reads as [11]

Λŝ(Ω) · ∇T (r,Ω,Λ) + T (r,Ω,Λ) =

γ

∫
K(Λ)

Λ′2
< T (r,Ω,Λ′) > dΛ′,

(1)

where K(Λ) is the bulk MFP distribution, T (r, ŝ,Λ) is
the temperature associated to phonons with MFP Λ, ŝ is

the phonon direction, γ =
[∫
K(Λ)/Λ2dΛ

]−1
and < . >

is an angular average. The RHS of Eq. 1 is the effec-
tive lattice temperature, a quantity describing the aver-
age phonon energy. The term K(Λ) is obtained by using
harmonic and anharmonic forces in connection with den-
sity functional theory [3, 17]. The spatial discretization
of Eq. 1 is achieved by the Finite-Volume (FV) method.
The simulation domain is discretized by means of an un-
structured mesh, computed by GMSH [18]. The phonon
BTE requires the solid angle discretization, as well, in
order to account for different phonon directions. We use
the Discrete Ordinate Method (DOM), a technique that
essentially solves the BTE for each phonon direction in-
dependently and then combines the solutions by an an-
gular integration [19]. As Si is a non-gray material, we
need to include the whole MFP distribution, which leads
to a discretization in the MFP space. In this study we
solve the BTE for 30 MFPs and 576 phonon directions
over a mesh with about 6500 elements. The actual al-
gorithm is detailed in [20]. The overall solution of Eq.
1 requires solving the BTE thousands of times, leading
to an increase in the computational time. However, our
solver has been conveniently parallelized and each con-
figuration takes only few minutes with a cluster of 32
nodes.

The walls of the pores are assumed diffusive, a condi-
tion that translates into

Tb = −
∫

Ω+

∫
(K(Λ)/Λ)T (r,Ω,Λ)̂s(dΩ) · n̂ dΩdΛ∫
Ω−

∫
(K(Λ)/Λ) ŝ(dΩ) · n̂ dΩdΛ

, (2)

where Ω− and Ω+ are the solid angle for incoming and
outgoing phonons with respect to the contact with nor-
mal n̂. Once Eq. 1 is solved, thermal flux is computed
via J(r) = 3

∫
K(Λ)/Λ < T (r,Ω,Λ)̂s > dΛ. The effec-

tive thermal conductivity is obtained by using Fourier’s
law, i. e. κeff = (L/∆T )

∫
hot

< j(r,Ω,Λ)n̂ > dS, where
∆T = 1 K is the applied temperature and K is the dis-
tance between the hot and cold contacts (or the size of
the unit-cell).

ALIGNED PORES

We first compute thermal transport in aligned configu-
rations, which we will refer to as AC and AS, depending
on whether the pores are square or circular, respectively.
The unit-cell comprises a single pore and is a square with
size L = 10 nm. Heat flux is enforced by applying a dif-
ference of temperature ∆T = 1 K along the x direction.
The porosity is fixed at φ = 0.25, and periodic boundary
conditions are applied throughout. The computed val-
ues for κeff are 6.37 and 6.67 W m−1 K −1 for AC and
AS, respectively. These values, which are considerably
lower than the bulk value 156 Wm−1K−1, are consis-
tent with those computed in our previous studies [21].
Using a Finite-Volume diffusive heat conduction solver,
we also compute thermal transport in absence of phonon-
boundary scattering, obtaining significantly higher values
(93.05 and 88.26 W m−1 K −1 for AC and AS, respec-
tively). Such results, as expected, reveal strong phonon
suppression due to phonon size effects. From the mag-
nitude of the thermal flux, which is shown in the upper
half of Fig. 1, we note that the areas with higher thermal
flux are near the spaces between pores perpendicular to
the applied temperature gradient.

FIG. 1. Magnitude of thermal flux. Red and blue areas refer
to high-flux and low-flux regions, respectively. The tempera-
ture gradient is imposed along the x-direction. In (a) and (b),
we show AC and AS, respectively. Phonons prefer to travel
in the spaces between the pores, as highlighted by the red ar-
eas. In (c) and (d), we show DC and DS, respectively. In all
the configurations the pores arrangement is periodic in both
x and y direction.
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RANDOM PORES

For random-pore (or disordered) configurations, the
size of the unit-cell is chosen to be L = 40 nm, four times
as large as that for the aligned cases. Non-overlapping
pores are randomly generated while keeping the porosity
fixed. As the area of the pores is the same as that of
the aligned arrangement, we have 16 pores within each
configuration. We compute κeff for three hundreds ar-
rangements, one hundred for each shape, which we refer
to as DC and DS. The magnitude of thermal flux for three
configurations, one for each shape, is shown in the lower
part of Fig. 1. We note that the formation of high-flux
regions is irregular as it depends on the randomly chosen
pore configuration. In the upper part of Fig. 2 we show
the κeff distributions obtained by Fourier’s law. We can
observe variations within 5% from the average value, due
exclusively to geometric effects arising from material re-
moval. The average values of κeff for DC and DS are
near that of their aligned counterparts. We pointed out
that this small variation in κeff motivates us to keep the
porosity fixed. If we assume that electrons travel diffu-
sively, the electrical conductivity will have a similar vari-
ation because of the same diffusive-like physics underly-
ing macroscopic transport of electrons and phonons [22].
Consequently, a decrease in κeff due to size effects with
no change in porosity will most likely translate into an
increase in ZT. When size effects are switched on in the
simulation, we see that pore disorder plays an important
role. Specifically, the DC and DS cases are found to have
average κeff values 15 % and 30 % lower, respectively,
than that of their aligned counterparts. These trends can
be understood by analyzing the geometries of the random
structures, as explained in the next section.

IDENTIFICATION OF A DESCRIPTOR

Here we attempt to correlate geometrical features to
κeff . In previous work [12], we reported that κeff in
nanoporous materials is dictated by the view factor and
the pore-pore distances. We note that the view factor is a
geometrical feature that describes the ability of a ray to
travel across the simulation domain without intercept-
ing the pores [23]. In random-pore configurations, the
view factor generally vanishes because of the disordered
pores blocking all the direct path across the unit-cell.
It is natural, therefore, to speculate whether the aver-
age pore-pore distance in the disordered configurations
is correlated with κeff . However, after a regression anal-
ysis, we conclude that unlike for the ordered case, such
a parameter has only a marginal role for the disordered
systems. In fact, rigorously speaking, only the inter-pore
spaces perpendicular to heat flux matter. In search of
a more meaningful parameter, we hypothesize that for a
generic arrangement we can model heat transport as a

FIG. 2. The diffusive κeff distributions for DC (a) and DS
(b) have mean values that are close to κeff of their aligned
counterparts, depicted by dotted lines. The values for κeff

computed by the BTE for DC (c) are slightly smaller than of
AC, while disorder significantly degrades thermal transport
in DS (d).

network of resistances. Within this assumption, we aim
to identify the set of pores that forms the highest resis-
tance perpendicular to the heat flux. To this end, we
first calculate all the possible “pore-paths” perpendic-
ular to the applied temperature gradient, and then we
compute the sum of the pore-pore distances within each
set of pores. The distances between adjacent pores is
conveniently described by the first-neighbor map, which
is computed as follows. Say the two pores are P1 and
P2, we compute their distance by following three simple
steps:

1. We compute the circumcenter of the two points, C1

and C2.

2. We discretized the distance between the two cir-
cumcenters, i.e C1 − C2 = 100∆d.

3. If the two pores intersect, then the distance d12 is
the total distance traveled by P1 until the inter-
section. If the two pores do not intersect, we go
back to point 2. If P1 intersects a pore other than
P2 then P1 and P2 are not neighbors and another
pores pair will be chosen.

The intersection among polygons is computed by the
package PyClipper [24].
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FIG. 3. (a) A random pores configuration is shown in a
alongside the unit-cell, depicted by the dotted line. The first-
neighbor map (b) highlights connection between pores that
can reach each other with no interference from other pores.
The red path is skew with respect to heat transport so it is
discarded. Conversely, the black path is perpendicular to heat
flux and, as such, is a potential bottleneck.

An example of first-neighbor map is shown in Fig. 3. A
potential phonon bottleneck is a collection of pores form-
ing a path that is perpendicular to the applied temper-
ature gradient. In order to identify such pores, we build
a directed graph G describing the connections of a pore
with the set of neighbors located at higher y-coordinate.
As the pores arrangement is periodic in both x and y-
axis, there exist paths on G that are periodic, as well. All
the periodic routes, called “cycles”, are calculated using
Johnson’s algorithm [25] implemented in NetworkX [26].
Although the number of cycles in each configuration can
easily reach few thousands, not all of them are practi-
cal for our purposes. We rule out the cycles that are
skewed with respect to the applied temperature gradient,
as shown in Fig. 5-b. After this screening, the average
number of cycles becomes few hundreds, an amenable
number for the subsequent analysis. In order to iden-
tify the bottleneck for each configuration we develop the
following algorithm:

1. For each cycle, C = C1, C2...Cn, we compute the
inter-pore distance of its constituting pores, Rn =
R1, R2...Rp, where p is the number of each cycle.
Then, we compute the sum of such distances, i.e.
Dn =

∑
nRn.

2. From the previous point, we have the set D =
D1, D2...Dn. The bottleneck is then d = min{D}.

As shown from the upper half of Fig. 4, κeff has a good
correlation with d. The effectiveness of d in describing
nanoscale thermal transport in such structures can be
estimated by the Spearman correlation rank, a quantity
that describes how two variables are monotonically cor-
related to each other [27]. For DC and DS, we obtain a
significant Spearman correlation (higher than 0.6), sug-

gesting that d can be used as a good descriptor. We

FIG. 4. Thermal conductivity distributions versus the size of
the phonon bottleneck for DC (a) and DS (b). A linear fitting
and the bottleneck distributions are also shown. The cyan
line is the pore-pore distance for the correspondent aligned
configurations. The set of pores associated to the most ef-
fective bottleneck for DC and DS are shown in (c) and (d),
respectively.

recall that a descriptor is a simple quantity that can be
used to estimate another quantity, which is challenging
to compute. Therefore, descriptors are powerful tools for
high-throughput, computationally-intensive calculations.
These results explain the trends in the κeff if we compare
the distribution of d with respect to the sum of the pore-
pore distances in the aligned configurations, both shown
in the upper part of Fig. 4. According to simple geo-
metric considerations, we have dAC = 4L(1− 2

√
φ/π) =

17.44 nm and dAS = 4L(1 −
√
φ) = 20 nm. For DC,

roughly half of the configurations have d lower than dAC
while for DS, almost all the configurations have d smaller
than that of AS. For these two cases, the combined ef-
fect of small bottleneck and vanishing view factor signif-
icantly lowers κeff . This predominance of the pore-pore
distance over the view factor is consistent with previ-
ous work [12]. We note that most of the bottlenecks
have a number of pores (∼6-7) which is higher than that
of their aligned counterparts (4). This result confirms
that smaller κeff , within configurations with the same
porosity, can be achieved with anisotropic pore lattices,
where the density of pores is higher along the Cartesian
direction orthogonal to the applied temperature gradi-
ent [14, 15]. The introduction of a simple descriptor can
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be used to estimate the ordering of the thermal conduc-
tivity of different samples with disordered pores [7, 13]

REPEATED-BOTTLENECK ALGORITHM

Last, we devise a method to quantify the influence of
the set of pores composing the bottleneck on κeff . To
this end, we use the identified bottlenecks to build a new
set of configurations, closely related to the ones analyzed
in the previous sections. The key idea is based on the fol-
lowing steps: 1) we create a random configuration as in
the first section and 2) identify its bottleneck. 3) Then,
we select the corresponding set of pores that created the
bottleneck and repeat them along the heat flux direction
while keeping the porosity fixed. We refer to this method
as ”repeated bottleneck“. In the upper half of Fig. 5, we
plot the thermal conductivity of the new configurations
(κ1
eff ) normalized by κ0

eff , i.e. the thermal conductivity
of the “parent” configurations. 70% of the structures de-
crease in thermal transport by an average of 30 %. A fur-
ther iteration of our algorithm shows that very few new
bottlenecks are formed in the new structures, hence the
convergence is achieved in one iteration, i.e. κ2

eff ≈ κ1
eff .

According to the lower part of Fig. 5, we first note that
new configurations have wider distributions. In fact, the
parent configurations with small d have κeff dictated by
their bottleneck. Hence, their bottlenecks are reinforced
in the corresponding new configurations, with consequent
degradation in κeff . In the other extreme, repeating a
“weak” bottleneck, i.e. with large d, introduces a signif-
icant view-factor, causing an increase in thermal trans-
port. The size peculiarity of the square pores leads to
small view factors for a wider range of d, so that the tail
of the distribution for small values of κeff is higher than
that for high values. For the DC case, the two tails are
almost fully symmetric. As expected, for all cases, the

average value of κ
(1)
eff is lower than that of κ

(0)
eff . In fact,

by definition, the value of d is generally smaller than the
other pore-pore distances for a given configuration, so re-
peating the bottleneck leads mostly to a degradation in
κeff . The repeated-bottleneck algorithm demonstrates
the important role of the bottleneck pores in dictating
κeff and offers a practical way of classifying strong and
weak phonon bottlenecks. Further details on configura-
tions resulting from the repeated-bottleneck algorithm
are reported in the SI.

CONCLUSION

In summary, by performing high-throughput calcula-
tions of thermal transport in disordered porous materials
we have quantified the effect of the randomness in pore
arrangement on the thermal conductivity. Furthermore,
we have devised a method to identify the set of special

FIG. 5. The ratio between κeff of the optimized configu-
ration and that of the original configuration for DC (a) and
DS (b). On average, 70% of the values are below 1. The
κeff distributions of the optimized configurations for DC and
DS are shown in (c) and (d), respectively. The superposition
with the distributions for the original configuration empha-
sizes the low-κeff configurations introduced by the repeated-
bottleneck approach.

pores composing the phonon-bottleneck, potentially em-
powering experimentalists with a simple tools to assess
thermal conductivity in realistic, disordered porous ma-
terials. Elaborating upon such a concept, we developed
the repeated-bottleneck method, an approach that clas-
sifies weak and strong bottlenecks.
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