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Heat Conduction in
Nanostructured Materials
Predicted by Phonon Bulk
Mean Free Path Distribution

We develop a computational framework, based on the Boltzmann transport equation
(BTE), with the ability to compute thermal transport in nanostructured materials of any
geometry using, as the only input, the bulk cumulative thermal conductivity. The main
advantage of our method is twofold. First, while the scattering times and dispersion
curves are unknown for most materials, the phonon mean free path (MFP) distribution
can be directly obtained by experiments. As a consequence, a wider range of materials
can be simulated than with the frequency-dependent (FD) approach. Second, when the
MFP distribution is available from theoretical models, our approach allows one to
include easily the material dispersion in the calculations without discretizing the phonon
frequencies for all polarizations thereby reducing considerably computational effort.
Furthermore, after deriving the ballistic and diffusive limits of our model, we develop a
multiscale method that couples phonon transport across different scales, enabling effi-
cient simulations of materials with wide phonon MFP distributions length. After validat-
ing our model against the FD approach, we apply the method to porous silicon
membranes and find good agreement with experiments on mesoscale pores. By enabling
the investigation of thermal transport in unexplored nanostructured materials, our

method has the potential to advance high-efficiency thermoelectric devices.
[DOI: 10.1115/1.4029775]
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1 Introduction

Nanostructured materials have gained much attention for ther-
moelectric applications, thanks to their ability to effectively sup-
press phonon thermal conductivity (PTC) [1]. Very low thermal
conductivities of thin films [2], nanowires [3], and porous materi-
als [4-7] have recently been reported, reaching in some cases a
suppression of two orders of magnitude with respect to the bulk.
However, understanding these phenomena is difficult, as classical
size effects become important and diffusive theories fail when the
characteristic material length becomes comparable to the average
phonon mean free path (MFP) [8]. Phonon classical size effects
have long been modeled by means of the Casimir limit, which
assumes that all phonons scatter diffusely at boundaries [9]. How-
ever, to effectively engineer thermal transport in arbitrary shapes
and structures, a more accurate model of heat transport is neces-
sary. To this end, many studies employ the BTE to compute pho-
non transport [10-12]. The simplest BTE model assumes that the
phonon group velocities and scattering times are frequency inde-
pendent, i.e., the medium is “gray.” Although the gray model has
been useful for understanding trends in thermal transport in many
nanostructured materials, it has poor predictive power—especially
for materials with wide MFP distributions. In some cases, the
MEFP distribution spans several orders of magnitude. For example,
in Si, although the most commonly used value for the MFP is 100
nm, it has been predicted that half of the heat is carried by pho-
nons whose MFP is greater than 1 um [13]. Recent studies have
addressed this challenge by including the full phonon distribution
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by successfully solving the frequency-dependent BTE (FD-BTE)
for both transient and steady-state cases [14—16]. However, de-
spite its high accuracy, the FD-BTE suffers two major limitations.
First, it requires knowledge of the actual phonon dispersion curves
and the phonon—phonon relaxation times, which are generally
unknown for potential thermoelectric materials. The second limi-
tation is related to computational efficiency: the FD-BTE requires
the discretization of the dispersion curves and, as a result, dense
sampling close to zero group velocity zones. Furthermore, as all
polarizations have to be included, it becomes computationally
prohibitive for materials with complex unit cells and phononic
materials, where phonon dispersion curves have several branches.

In this work, we provide a new form of the steady-state BTE,
with the ability to compute nanoscale heat transport using only
the bulk MFP distribution as input, a quantity that can be directly
obtained experimentally [17,18], while retaining the accuracy of
the FD-BTE. In addition, we couple our model, which we refer to
as MFP-BTE, with the ballistic BTE and the Fourier model in
order to include ballistic and diffusive effects, respectively, in a
consistent and seamless manner. The mapping of the bulk MFP
distribution into a distribution that depends on the actual material
geometry enables a deeper understanding of thermal transport in
nanomaterials. We also provide a connection between the MFP-
BTE and the “phonon suppression function,” a useful function
that describes the departure of the MFP distribution from its bulk
counterpart. We apply our method to study three-dimensional
classical size effects in porous Si membranes and find good agree-
ment with experiments on mesoscale size pores. As our method
can be applied to any material whose MFP distribution is known,
its applicability could enable a substantially broader range of sim-
ulations of thermal transport in nanomaterials. Furthermore, in
contrast to the FD-BTE approach, the MFP-BTE method is based
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on a discretization of the MFPs, and, as such, the computational
time does not increase as the number of the phonon branches
increases, enabling efficient simulations of materials with com-
plex unit cells.

2 Frequency Dependent BTE

In analogy with photon radiation, nanoscale heat transport can
be described by the intensity of phonons I(r,s,w,p) = v(w,p)
hof (w, p)D(w,p)/(4n), where r is the spatial coordinate, s is the
direction of phonon transport within a unit solid angle, w and p
are the phonon frequency and polarization, respectively, v(w, p) is
the magnitude of the phonon group velocity, D(w,p) is the pho-
non density of states, f(w, p) is the nonequilibrium phonon distri-
bution, and 7 is the reduced Plank’s constant. In its original
formulation, the FD-BTE describes the intensity of phonon /
under the relaxation time approximation [10]

101 (1) =1

v Ot VT M
where t(w,p) is the scattering time and [°(T.) = v(w,p)
hiof®(w, T.)D(w,p)/(47) is an isotropic phonon intensity para-
meterized by the Bose—Einstein distribution f*(w, T) = [exp(fiw/
kgTyr) — 1]71 at a given local effective temperature 7y (r) [19,20].
We point out that 77 (r) is not a thermodynamic temperature but
rather should be considered as a measure of the average energy of
phonons at a given point. In order to compute the PTC, we apply
a difference of temperature AT across a simulation domain with
length L and calculate the thermal flux from the hot contact to the
cold one. The thermal flux J(r) is computed by

o
Jr)=4n)" [ (Is)dw )
P 0

where (x) = 1/4n [, xdQ is the angular average over the solid
angle 47, and o}, is the frequency cut-off for a given polarization.
In this work, we consider only the steady-state BTE, i.e.,
(01/0¢) =~ 0. The term I°(r,s, w, p) can be computed by applying
the continuity equation to the heat flux, ie., V-J(r) =0 to
Eq. (2), which yields
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We note that as both I°(w, p, T) and I(w, p) are frequency depend-
ent, knowledge of the phonon dispersion curves and scattering
times is required.

3 MFP Dependent BTE

In the following text, starting from Eqs. (1)—(3) we will develop
a new version of the BTE where the only required input is the
bulk phonon MFP distribution, given by [21]

A dA\ !
K(A) = —SXP:CSV(%) 4)

In Eq. (3), Cs(w) is the spectral heat capacity (i.e., the volumetric
heat capacity times the phonon density of states) and A(w,p)
= v(w,p)t(w,p) is the MFP. If the applied temperature gradient is
small enough to assume that all the material properties are constant
throughout the simulation domain, we can define the variable as T’
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representing the departure from T of the effective temperature
T, associated with a given phonon frequency, polarization, and
direction, normalized by AT. For simplicity, in our simulations we
use AT=1 and T, =0. We note that a similar formulation is used
in the low-variance deviational Monte Carlo approach, developed
by Paraud and Hadjiconstantinou [22,23]. Including the first-order
Taylor expansion [18] of I°(w,p,T;) = I°(w,p, To) + (1/47)Cs
(w,p)v(w,p)(TL — To) in Eq. (3), we have

As - V[ = I°(Ty)] +1 —I°(Ty)

'w/’, -1 oy (7 _ 70
—CSV[ZJ %da)/ ZJ T 4y (6

p 70 P 0 A

7

where we use the fact that 1°(T}) is isotropic and spatially inde-
pendent. We note that Eq. (6) still needs the phonon scattering
times and dispersion curves. If we use the new variable T, named
“mode temperature,” Eq. (6) can be rearranged into

~ - >~ K .
As-VT+T = yJ —(T)dA 7
0o A

where y = [[;° (K/A)dA] " is a material property, which for Si
is 75; = 2.2739 x 10" "m3W~!K. Note that the right-hand side of
Eq. (7) is equal to Ty.(r) = ((TL(r) — Ty)/AT), which is the nor-
malized local temperature. Since Eq. (7) requires only the bulk
MEFP distribution as input, we will refer to it as the MFP depend-
ent BTE or MFP-BTE for short. We note that in deriving Eq. (7),
we have assumed isotropic BZ. Further studies will be devoted to
including anisotropicity in the MFP-BTE.

4 Boundary Conditions

According to Refs. [15,24], for the FD-BTE, periodic boundary
conditions have to be applied to the departure of the phonon intensity
from equilibrium. For example, if P is the periodicity vector, we have

1(1‘ + P7 S, U),p) - 1()([' + P7 CU) - [(l', S, C!),p) - [0(1‘, (U) (8)

It is possible to show that, in the case of MFP-BTE, we simply
need to apply AT = 1. Partially diffusive boundary conditions on
a surface, with normal n, can be applied by imposing

T(r,s) = (1 fp)%J 0T(r,s’)s’ -ndQ +pI(r,s;)  (9)
s’-n>

where s; = s — 2|s - n|n is the specular direction related to the sur-
face with normal n, and p is the specularity parameter, depending
on surface roughness [19]. Finally, a prescribed temperature T,

can be enforced by simply imposing 7' = T,.

5 Effective Thermal Conductivity

Within the MFP-BTE formulation, the thermal flux can be
obtained by J = 3AT [* (K(A)/A)(T(A))sdA. Once Eq. (7) con-
verges, we can compute the PTC by combining Eq. (2) with

Fourier’s Law
3L K -~
off = — —(Ts -n)dAdS
fefr AJFJO A< 5-m)

10)

where I is either the cold or hot contact, and A is its area. In
Eq. (10), we use (Is) = 0, because I is isotropic. We note that
Egs. (7)—-(10) do not require the use of AT. It is useful at this point
to define the phonon suppression function

S(A) = EJ (Ts -n)dS
r

AA an
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which yields a simpler formula for the PTC ke = f(;x
K(A)S(A)dA. If we denote the MFP distribution in the nanostruc-
tured material as K" (A), the phonon suppression function can
be formally defined by S(A) = K™ (A)/K(A). Although defined
differently, S(A) is essentially the same as the material independ-
ent boundary function D(A™/A) = A" /A introduced by
Yang and Dames in Ref. [21], where A, .., is the MFP in the
nanostructured material, except that within our formalism S(A)
may in general depend on the material. We note that the physical
meaning of S(A) is slightly different from the phonon suppression
function defined in recently developed MFP distribution measure-
ment techniques [17,18], where the suppression function refers to
the suppression of heat flux due to the finite thermal length
induced in the bulk material.

6 Ballistic Limit of the MFP-BTE

In order to derive the ballistic limit of the MFP-BTE, we define
the Knudsen number as Kn = A/L. For nanostructures with Kn >
1, phonons travel primarily ballistically and their effective MFPs
approach the characteristic length of the material. Within this re-
gime, it is possible to show that the mode temperature distributions
are MFP independent. Under this simplification, Eq. (7) turns into

As- VT + T = const (12)
which is the ballistic BTE [25]. Equation (12) is computationally
less expensive than the MFP-BTE because phonons with different
MFPs are decoupled from each other.

7 Diffusive Limit of the MFP-BTE

Following a similar approach as in Ref. [16], the diffusive limit
of the MFP-BTE can be obtained by using the first spherical
expansion of S(r,s). Given a small perturbation, ®(r) - s in the s
direction, the inclusion of the spherical expansion of T(r,s)
= (T(r,s)) + @(r) - s into Eq. (7) leads to

T=y rc %(T}d/\/ — AV - (sT) (13)

0

where V- ¢ < AV - (sT) is used. The corresponding heat flux,
J = —K3ATV/(T), which is obtained by multiplying both sides of
Eq. (13) by (3ATK/A)s and integrating them over the solid angle,
is now diffusive. The continuity equation for the thermal flux,
derived by multiplying by 3ATK /A both sides of Eq. (7) and com-
puting an angular average, is given by

3ATK K - -
va=0 («,L F<T>dA’-<T>> (14)
The combination of Egs. (14) and (13) leads to
NV — (B =y [ EiFan |
VD)~ () =] sa(d (3)

which is a diffusive equation with the right-hand side acting as an
effective heat source and describing the energy balance among
different phonon modes. We refer to Eq. (15) as the modified Fou-
rier equation (MFE) [16].

8 Fourier/BTE Coupling

The solution of Eq. (7) requires the discretization of the simula-
tion domain into a mesh whose characteristic size should be at
least as small as the smallest MFP, making the phonon transport
calculation in materials with wide MFP distributions computation-
ally expensive. To solve this numerical issue, we define a thresh-
old in the Knudsen number Knp, below which phonons are solved

Journal of Heat Transfer

by means of the MFE. Being defined directly in term of (T),
Eq. (15) is computationally less intensive than the MFP-BTE, but
at the expense of neglecting scattering between phonons and mate-
rial boundaries [16]. We also identify a threshold Kng, above which
all phonons are solved by means of Eq. (12). As in the ballistic re-
gime, all phonon modes are decoupled from each other, and Eq.
(12) has to be solved only once. By solving iteratively Eqgs. (7),
(12), and (15), we ensure energy conservation among all phonon
modes, which are linked to each other through 7 (r). The first
guess for T(r) is given by Fourier’s simulation [26]. A general
approach for choosing the transition points among different regimes
is to start with the reasonable guess Knp, = Kng = 1. Then, we push
Knp and Knp toward lower and higher values, respectively, until
convergence in the heat flux is reached.

9 Discretization Details

The solution of the MFP-BTE requires the discretization of the
solid angle. Here, we use simple uniform sampling, although a
more sophisticated technique, i.e., based on Gaussian integration,
would enable the use of coarser grids [16]. The solid angle is dis-
cretized into Ny azimuthal and Ny polar angles. The center direc-
tion for each slice is

s = sin(0;)sin(¢p,)X + sin(0;)cos(¢p,;)y + cos(0x)z (16)
where k = 0..Ny,l = 0...Ny. After integrating Eq. (7) over the
control angle denoted by the indexes &/, we have

%}dsu NT+T=y J:O %(T)dA’ 17)
where Sy; is given by
Su = sin(¢;)sin(0.5A¢;)[AB) — cos(20)sin(Ab)]x
= cos(¢;)sin(0.5A¢;)[AO; — cos(20)sin(Ab,)]y
= 0.5A¢;sin(20;)sin(A0; )z (18)

and AQy = 2.0sin(6)sin(0.5A0,)A¢;. In Eq. (18), Ab; and A,
refer to the discretization of the angle 6, and ¢;, respectively.
The MFP-BTE requires the iterative solution of Eq. (17). The
MFP-BTE is computed N times, where N is the number of MFPs
used to span the whole range of the bulk phonon MFP distribu-
tion. The resulting set of MFPs is A,, = A;...Ay and is logarithmi-
cally equally spaced. Once the distributions for T(A,) are
obtained, we calculate the new lattice temperature by the integral
appearing at the right-hand side of Eq. (17). This integration has
to be carried out carefully, as for computational reasons N is typi-
cally smaller than the number of MFPs M needed for an accurate
description of K(A). To facilitate the following analysis, we
define a new set of MFPs A; = A;...Ay and the associated
sampling of the MFP distribution K;, = K(A). The calculation of
the lattice temperature requires the mapping A — A. To this end,
a simple linear interpolation leads to T =T(A,,)

(1 - gk) + T(Anﬁl)gk’ where g, = (~(Ank+l - Ak)/(Aerl - An))

and n, is the largest n such that A,, < Ay. According to this notation,
the normalized lattice temperature can be computed as

7o =3 ST = ) + (P AN

(19)
A

The solution of the MFP-BTE for a given A, is given below in a
more concise form

A, I
——Sy VT +T =T,

AQy (20)
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which has to be discretized spatially, as well. We used the finite
volume (FV) method, which determines the mode temperature at
the center of each cell. The FV discretization of the MFP-BTE
can be obtained by integrating Eq. (20) over the control volume
Avm

A,

Tod
AQy, Ldv

J Sy - ViV + J @1
AV,

Tdv = [
AV,

JAV,

In the FV approach, the temperature within each cell is considered
constant throughout the cell, hence Eq. (21) becomes

Ay

AV, AQy 22)

J TSy -ndS+T =T
AS

where we used Gauss’s theorem. In Eq. (22), n is the normal to
the surface along which the integration is carried out. The actual
implementation of Eq. (22) may follow different approaches. In
our case, we use the upwind scheme, which is described in the fol-
lowing. According to Fig. 1(c), let the centroid of an arbitrary cell
be P, whereas a point belonging to one of its sides, with normal n,
is denoted by B. According to the upwind scheme, T(B) = T(P)
only if n-s > 0. Further details regarding the implementation
of the upwind FV method for the BTE can be found in
Refs. [16,26].

10 Two-Dimensional Simulations

In order to assess the accuracy of our model, we compare the
MFP-BTE with the FD-BTE for two-dimensional porous Si. Then,
we ensure that the diffusive limit is fully recovered by comparing
analytical data with results obtained with a macroscale domain.

10.1 MFP/FD-BTE Comparison. The FD-BTE requires as
input the phonon dispersions and scattering times. Specifically for
the FD-BTE/MFP-BTE comparison, i.e., we use p =0 in Eq. (9)
and only the dispersion curves along /00 are considered [14]. The
phonon frequencies, shown in Fig. 2(a), are computed by means
of first principles calculations by using the QUANTUM ESPRESSO soft-
ware package [27]. The Umklapp and isotopic phonon scattering
times are obtained by

1/1, = Aw*Texp(B/T)
1/‘[[ = Cw4

(23)
(24)

where A, B, and C are parameters used to fit experimental data for
bulk Si [14]. The total scattering time is simply obtained by using

(a) (b)
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Fig. 2 (a) Phonon dispersion along the 001 direction com-
puted by first-principles calculations, (b) the MFPs for different
phonon polarizations, (c¢) the cumulative thermal conductivity
at room temperature, and (d) comparison between the FD-BTE
and the MFP-BTE method for a unit cell of size L =10 nm. After
a few iterations, the two methods lead to the same thermal
conductivity.

Matthiessen’s rule 1/t = 1/t, + 1/1;. The phonon MFPs for each
polarization are shown in Fig. 2(b) whereas the accumulation PTC
used for the MFP-BTE is reported in Fig. 2(c). We consider a unit
cell with length L=10 nm containing one pore with diffusive
walls. Periodic boundary conditions along the heat flux direction
are applied and a fixed porosity ¢ = 0.25 is considered. According
to Fig. 2(d), the MFP-BTE produces the same results as the
FD-BTE, demonstrating the equivalence between the two meth-
ods. We note that for the MFP-BTE we have to discretize only
one function, i.e., the bulk MFP distribution, whereas the
FD-BTE requires the discretization of the phonon dispersion
curves for each polarization, increasing the computational
effort—especially for complex unit cell materials, such as Bi,Tes.
The computational efficiency of the MFP-BTE can_be further
increased if we use a power law interpolation. In fact, S(A) is typ-
ically a smooth function in A, and goes as 1/A toward the ballistic
limit. For the FD-BTE, however, the phonon dispersion curves

(a) ) 1.0

208

©c o ©
o N o))

Accumulation P
(@]
S

1 (c)

Fig. 1

0. '
10! 10°
Mean free path (nm)

10° 10*

(a) Discretization of the solid angle in slices of AQ. Because the system is two-

dimensional, we consider only the upper hemisphere and then apply the symmetry. (b) The cu-
mulative thermal conductivity of Si, the only input required by the MFP-BTE. The MFP range
is discretized into a small number of MFPs, typically a few tenths, for which the MFP-BTE is
solved. (¢) An example of a triangular element of the simulation domain. The centroid is
denoted by P, whereas the point at the middle of the side with normal n is denoted by B.
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may require a dense interpolation in those zones with small group
velocity [14].

10.2 Phonon Suppression Function. We now analyze the
phonon suppression function, as given in Eq. (11), for a porous
material with circular pores and a periodicity of L =100 nm.
According to Fig. 3(a), for very small MFPs, S(A) reaches its
maximum value and does not depend on the MFP any longer.
That is, we are approaching the diffusive regime. For very large
MFPs, the suppression function decreases abruptly and goes as
1/A, the typical trend for the ballistic regime. The transition point
can be exploited by looking at the derivative of S(A) with respect
to the MFP, shown in Fig. 3(b). The maximum of the |S'(A)|, that
is the MFP above which the suppression functions is about 0.5, is
around 44 nm, which is the pore—pore distance. The suppression
function can hence provide a useful way to identify the character-
istic length of a nanomaterial, which is the MFP that leads to
S”(A) = 0. Further studies may be devoted to exploring whether
or not it is possible to have multiple characteristic lengths. The
introduction of §'(A) leads to an alternative formula for the reduc-
tion of the PTC due to size effects

r(A) = ) _ Joo S'(A)a(A)dA 25)

Kbulk 0

where «(A) = 1/icpuic [ K(A')dA" is the normalized cumulative
thermal conductivity, a function defining the total amount of heat
carried by phonons whose MFP is below A [28]. In Eq. (25), we
used S(c0) =0 and «(0) =0 [21]. From Fig. 3(b), it is clear that
low thermal conductivities can be obtained by (i) having charac-
teristic lengths equal to MFPs for which a(A) is relatively low
and (ii) having narrow S'(A). While this work is based primarily
on methodology, optimizing material geometry to meet these con-
ditions is beyond the scope of our study.

10.3 Diffusive Limit. We now further validate our code by
allowing the length of the unit cell to reach macroscopic scales. In
Fig. 4(a), the effective temperature computed by the MFP-BTE
for the L =100 nm case is reported. As we can see from Fig. 4(b),
phonons mostly travel in the spaces between pores, due to colli-
sions with pore boundaries

In Fig. 4(c), the cumulative thermal conductivity a""°(A)
= Kpulk j(;\ K(A)S(A')dA' is plotted for different length scales.

(a)

According to Fig. 4(c), for L =10 nm, the PTC is keir = 5 W/mK
while for very large pores the thermal transport reaches the diffu-
sive limit, as predicted by Hashin and Shtrikman [29]
Ket/Koux = (1 — @)/ (1 + ¢) ~ 89.5 W/mK. The optimum val-
ues for the transition Knudsen numbers are Knp=0.1 and
Knp = 10. We have also performed calculations without using the
multiscale scheme described above and similar results have been
obtained.

11 Three-Dimensional Simulations

In order to simulate realistic, three-dimensional systems, we
use the bulk MFP distribution computed by first principles [30]. In
the Secs. 11.1 and 11.2, we consider both nanoscale and meso-
scale structures, respectively.

11.1 Silicon Nanomesh. We calculate the thermal flux across
the Si nanomesh studied in Ref. [5] with length L =34 nm, poros-
ity ¢ =0.173, and height H =22 nm. In Fig. 5(a), we plot the cu-
mulative thermal conductivity. The measured value is about only
Kett = 2.85 W/mK [5], while the computed PTC is 8 W/m K.
Aside from unavoidable errors in measuring thermal conductiv-
ities at the nanoscale, this discrepancy could suggest the presence
of phonon wave effects. However, according to Ref. [31], such a
low experimental PTC can be justified by the presence of an
amorphous layer along the pore walls, leading to a higher effec-
tive porosity. We remark here that our work neglects wave effects,
hence the reduction of the PTC arises only from the scattering
between phonons and the boundaries. Phonon wave effects may
dominate thermal transport at room temperature in certain systems
such as those composed of thin films with periodic nanopillars
[32], where local resonances cause band flattening. Such effects
and wave effects in general are beyond the scope of this study.

11.2 Porous-Silicon Membrane. We now consider a meso-
scale porous Si membrane with L =4 pm and height H =4.49 um,
as reported experimentally in Ref. [4]. As shown in Fig. 5(b), heat
travels primarily in the spaces between pores along the direction
of the imposed temperature gradient. The top and bottom surfaces
are considered purely diffusive and act as additional scattering
sources. This effect can be further understood if we examine the
cut in the magnitude of thermal flux reported in Fig. 5(c). In fact,
most of the thermal flux is concentrated in the middle of the

(b)
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0.2

0.0
102 107 10° 10! 10° 10°
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©
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Fig. 3 (a) The phonon suppression function S(A), normalized to 1. For very small MFPs, S
reaches its maximum values and becomes flat, meaning that we are reaching the diffusive
regime. For very large MFPs, the suppression function goes into the ballistic regime,
namely, S~ 1/A. In the inset, the magnitude of the thermal flux is shown. (b) The derivative
of the suppression function |S'(A)| superimposed on the cumulative thermal conductivity
of Si. The maximum of |S'(A)| is obtained for a MFP that equals the pore—pore distance.
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Fig. 4 (a) Effective temperature map for the L =100 nm case.
The normalized heat flux is ensured by applying a difference of
temperature to the unit cell. (b) Normalized magnitude of ther-
mal flux. Most of the heat travels in the space between pores.
(c) Cumulative for different sizes of the unit cell L, ranging from
the nanoscale to the macroscale. (d) PTC versus the unit cell
size. For macroscales, the effective thermal conductivity
reaches the diffusive regime.

sample, leading to further reduction in the PTC. As the scattering
with the top and bottom surfaces is not included in the MFE, the
optimum threshold in the Knudsen number is lower than the one
used for the 2D case and is determined to be Kp=0.025. The
computed PTC is about x.;r = 56 W/mK, while the experimental
value is 45 W/m K. Considering the error in the measurements for
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Fig. 5 (a) The cumulative thermal conductivity for a mesoscale
porous-Si membrane [4] and Si nanomesh [5]. Phonon classical
size effects strongly depend on the limiting dimension that is
the smallest between the pore size and the sample thickness.
(b) The magnitude of the thermal flux for the periodic structure.
Phonons travel between pores along the direction of the gradi-
ent of the temperature, due to phonon-pore scattering. (c) A cut
of magnitude of the thermal flux map. Most of the heat is con-
centrated toward the middle of the sample due to the diffuse
scattering of phonons with the top and bottom surfaces.
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thin films [32], the two results are in good agreement with
each other. We note that the best numerical estimation to date is
67 W/m K, obtained by the MFP sampling method [32]. We
remark that, although the simulation domain is in the mesoscale
regime, the above results have been obtained with no input param-
eters, demonstrating the validity of our multiscale method. We
remark that while the method has been applied to Si, its validity is
general and any material can be modeled, as long as its bulk MFP
distribution is known, either experimentally or computed by first
principles.

12 Conclusions

In summary, we have developed an efficient method based on
the BTE with the ability to compute the PTC without requiring
prior knowledge of the phonon dispersion curve and three-phonon
scattering times, using only the bulk MFP distribution as input,
which can be directly obtained through experiments. In addition
to its wide range of applicability, this method is more computa-
tionally efficient than the FD-BTE, particularly for materials with
complex unit cells. Our results show good agreement with meas-
urements on mesoscale porous Si membranes, showing the valid-
ity of the model across different length scales.
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Nomenclature

A = area of the contact (m?)
B = point along a element’s boundary (m)
spectral-volumetric heat capacity J m > K" s)
density of states (m s)
distribution function
interpolation function
reduced Plank’s constant (J s)
phonon intensity (Wm~2sr~'s)
equilibrium phonon intensity (Wm™2sr~!s)
MFP distribution in bulk (W m > K™ ")
= MFP distribution in the nanosystem (W m 2K
Kn = Knudsen number
L = distance between the hot and cold contact (m)
n = normal vector
Ny = number of azimuthal angles
Ny = number of polar angles
= element’s centroid (m)
r = position vector (m)
s = phonon direction
S = integrated phonon direction (sr)
S = suppression function
Ty, = lattice temperature
T = normalized mode temperature
T1. = normalized lattice temperature
T,,, = mode temperature (K)
Ty = equilibrium temperature (K)
v = group velocity (ms™!)
o = cumulative thermal conductivity in bulk
7 = material property (K W' m )
AT = applied difference of temperature (K)
Aw = solid angle discretization (sr)
A = MFP in bulk (m)
A"™" = MFP in the nanosystem (m)
A = MFP discretization (m)
Kg = Boltzmann’s constant (J Kﬁl)
Kpulk = bulk thermal conductivity (WmflK"P
Kerr = effective thermal conductivity (W m™ K™Y
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relaxation time (s)

= material’s porosity

small perturbation to the mode temperature
solid angle (sr)

angular frequency of phonons (rad s_l)
maximum angular frequency for a given
polarization p (rad s
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